Ejemplo n.º 1
0
    def __call__(self, player):
        if not isinstance(player, CapturePlayer):
            player = ModuleDecidingPlayer(player,
                                          self.env,
                                          greedySelection=True)
        player.color = CaptureGame.WHITE
        self.opponent.color = CaptureGame.BLACK
        self.reset()
        current = 0
        games = 0
        while games < self.maxGames and not self.stable(current):
            games += 1
            self.env.reset()
            self.env.giveHandicap(current, self.opponent.color)
            self.env.playToTheEnd(self.opponent, player)
            win = self.env.winner == player.color
            self.addResult(current, win, self.env.movesDone)
            if self.goUp(current) and current < self.maxHandicaps:
                current += 1
            elif self.goDown(current) and current > 1:
                current -= 1

        high = self.bestHandicap()
        # the scale goes from -1 to (the highest handicap + 1)
        if not self.fluctuating():
            return high + self.winProp(high)
        else:
            return (high -
                    0.5) + (self.winProp(high) + self.winProp(high - 1)) / 2.
Ejemplo n.º 2
0
    def __call__(self, player):
        if not isinstance(player, CapturePlayer):
            player = ModuleDecidingPlayer(player, self.env, greedySelection=True)
        player.color = CaptureGame.WHITE
        self.opponent.color = CaptureGame.BLACK
        self.reset()
        current = 0
        games = 0
        while games < self.maxGames and not self.stable(current):
            games += 1
            self.env.reset()
            self.env.giveHandicap(current, self.opponent.color)
            self.env.playToTheEnd(self.opponent, player)
            win = self.env.winner == player.color
            self.addResult(current, win, self.env.movesDone)
            if self.goUp(current) and current < self.maxHandicaps:
                current += 1
            elif self.goDown(current) and current > 1:
                current -= 1

        high = self.bestHandicap()
        # the scale goes from -1 to (the highest handicap + 1)
        if not self.fluctuating():
            return high + self.winProp(high)
        else:
            return (high - 0.5) + (self.winProp(high) + self.winProp(high - 1)) / 2.0
Ejemplo n.º 3
0
 def __call__(self, x):
     """ If a module is given, wrap it into a ModuleDecidingAgent before evaluating it. 
     Also, if applicable, average the result over multiple games. """
     if isinstance(x, Module):
         agent = ModuleDecidingPlayer(x, self.env, greedySelection = True)
     elif isinstance(x, CapturePlayer):
         agent = x
     else:
         raise NotImplementedError('Missing implementation for '+x.__class__.__name__+' evaluation')
     res = 0
     agent.game = self.env
     self.opponent.game = self.env
     for dummy in range(self.averageOverGames):
         agent.color = -self.opponent.color
         x = EpisodicTask.__call__(self, agent)           
         res += x
     return res / float(self.averageOverGames)
Ejemplo n.º 4
0
 def __call__(self, x):
     """ If a module is given, wrap it into a ModuleDecidingAgent before evaluating it. 
     Also, if applicable, average the result over multiple games. """
     if isinstance(x, Module):
         agent = ModuleDecidingPlayer(x, self.env, greedySelection=True)
     elif isinstance(x, CapturePlayer):
         agent = x
     else:
         raise NotImplementedError('Missing implementation for ' +
                                   x.__class__.__name__ + ' evaluation')
     res = 0
     agent.game = self.env
     self.opponent.game = self.env
     for dummy in range(self.averageOverGames):
         agent.color = -self.opponent.color
         x = EpisodicTask.__call__(self, agent)
         res += x
     return res / float(self.averageOverGames)
Ejemplo n.º 5
0
 def __call__(self, p1, p2):
     self.temp = self.minTemperature
     if self.useNetworks:
         p1 = ModuleDecidingPlayer(p1, self.task.env, temperature = self.temp)
         p2 = ModuleDecidingPlayer(p2, self.task.env, temperature = self.temp)
     else:
         assert isinstance(p1, CapturePlayer)
         assert isinstance(p2, CapturePlayer)
         p1.game = self.task.env
         p2.game = self.task.env
     p1.color = CaptureGame.BLACK
     p2.color = -p1.color
     self.player = p1
     self.opponent = p2
     
     # the games with increasing temperatures and lower coefficients
     coeffSum = 0.
     score = 0.
     np = int(self.cases * (1-self.presetGamesProportion))
     for i in range(self.maxGames):
         coeff = 1/(10*self.temp+1)
         preset = None
         if self.cases > 1:
             if i % self.cases >= np:
                 preset = self.sPos[(i-np) % self.cases]
             elif i < self.cases:
                 # greedy, no need to repeat, just increase the coefficient
                 if i == 0:
                     coeff *= np
                 else:
                     continue
         res = self._oneGame(preset)
         score += coeff * res
         coeffSum += coeff
         if self.cases == 1 or (i % self.cases == 0 and i > 0):
             self._globalWarming()
         
     return score / coeffSum
Ejemplo n.º 6
0
__author__ = 'Tom Schaul, [email protected]'

from pybrain.rl.environments.twoplayergames import CaptureGame
from pybrain.rl.agents.capturegameplayers import RandomCapturePlayer, KillingPlayer, ModuleDecidingPlayer
from pybrain.rl.agents.capturegameplayers.clientwrapper import ClientCapturePlayer
from pybrain.rl.experiments import Tournament
from pybrain.tools.shortcuts import buildNetwork
from pybrain import SigmoidLayer

game = CaptureGame(5)
randAgent = RandomCapturePlayer(game, name='rand')
killAgent = KillingPlayer(game, name='kill')

# the network's outputs are probabilities of choosing the action, thus a sigmoid output layer
net = buildNetwork(game.outdim, game.indim, outclass=SigmoidLayer)
netAgent = ModuleDecidingPlayer(net, game, name='net')

# same network, but greedy decisions:
netAgentGreedy = ModuleDecidingPlayer(net,
                                      game,
                                      name='greedy',
                                      greedySelection=True)

agents = [randAgent, killAgent, netAgent, netAgentGreedy]

try:
    javaAgent = ClientCapturePlayer(game, name='java')
    agents.append(javaAgent)
except:
    print 'No Java server available.'