Ejemplo n.º 1
0
class NeuronDecider(BaseDecider):
    """
    The class is responsible for learning to recognize certain group of objects.

    Attributes
    -----------
    hiden_neurons : int
        Number of hiden neurons.

    OUTPUT_NEURONS : int
        Number of output neurons.

    input_neurons : int
        Number of input neurons.

    X_train : numpy array of array of floats
        Each item of the array contains specific "coordinates" of the train
        object in array.

    X_test : numpy array of array of floats
        Each item of the array contains specific "coordinates" of the test
        object in array.

    y_train : numpy array of ints
        Each item of the array contains a number of the group which the train
        object belongs. Position in the array
        corresponds to item in X_train.

    y_test : numpy array of ints
        Each item of the array contains a number of the group which the test
        object belongs. Position in the array
        corresponds to item in X_test.

    maxErr : float
        Maximal error which would satisfy trainer

    maxEpochs : int
        Maximum number of epochs for training
    """

    OUTPUT_NEURONS = 1

    def __init__(self,
                 treshold=0.5,
                 hidden_neurons=2,
                 maxErr=None,
                 maxEpochs=20000):
        """
        Parameters
        -----------
        hidden_neurons: int
            Number of hidden neurons

        maxErr : NoneType, float
            Maximal error which would satisfy the trainer. In case of None trainUntilConvergence methods
            is used

        maxEpochs : int
            Maximum number of epochs for training

        Note
        -----
        Attributes with None values will be updated by setTrainer
        and train methods
        """

        self.hiden_neurons = hidden_neurons

        self.input_neurons = None
        self.X = None
        self.y = None

        self.treshold = treshold
        self.maxEpochs = maxEpochs
        self.maxErr = maxErr

        self.net = None

    def learn(self, searched, others):
        """
        This method loads lists of specific values of searched objects and
        others. Then the sample will be  divided into train and
        test samples according to user.

        Parameters
        -----------
        searched : iterable
            List of searched objects values (their "coordinates")

        others : iterable
            List of other objects values (their "coordinates")

        Returns
        -------
        NoneType
            None
        """
        if not len(searched) or not len(others):
            raise QueryInputError(
                "Decider can't be learned on an empty sample")

        # Resolve number of input neurons
        self.input_neurons = len(searched[0])

        # Input is accepted as a numpy array or as a list
        if type(searched) != list:
            try:
                X = searched.tolist() + others.tolist()
            except AttributeError as err:
                raise AttributeError("Wrong coordinates input: %s" % err)
        elif type(searched) == list:
            X = np.array(searched + others)

        # Note searched objects as 1 and others as 0
        self.y = np.array([1 for i in range(len(searched))] +
                          [0 for i in range(len(others))])
        self.X = X

        self.train()

    def train(self):
        """Train neuron grid by training sample"""

        self.net = FeedForwardNetwork()

        inLayer = LinearLayer(self.input_neurons)
        hiddenLayer = SigmoidLayer(self.hiden_neurons)
        outLayer = LinearLayer(self.OUTPUT_NEURONS)

        self.net.addInputModule(inLayer)

        self.net.addModule(hiddenLayer)
        self.net.addOutputModule(outLayer)

        in_to_hidden = FullConnection(inLayer, hiddenLayer)
        hidden_to_out = FullConnection(hiddenLayer, outLayer)

        self.net.addConnection(in_to_hidden)
        self.net.addConnection(hidden_to_out)
        self.net.sortModules()

        ds = ClassificationDataSet(self.input_neurons,
                                   self.OUTPUT_NEURONS,
                                   nb_classes=3)
        for i, coord in enumerate(self.X):
            ds.addSample(coord, (self.y[i], ))

        trainer = BackpropTrainer(self.net,
                                  dataset=ds,
                                  momentum=0.1,
                                  verbose=True,
                                  weightdecay=0.01)

        if self.maxErr:
            for i in range(self.maxEpochs):
                if trainer.train() < self.maxErr:
                    print "Desired error reached"
                    break
        else:
            trainer.trainUntilConvergence(maxEpochs=self.maxEpochs)

        print "Successfully finished"

    def evaluate(self, coords):
        """
        Find if inspected parameter-space coordinates belongs to searched
        object

        Parameter
        ---------
        coords : list of lists
            Parameter-space coordinates of inspected objects

        Returns
        ------
        numpy.array
            Probabilities of membership to searched group objects
        """
        pred = []
        for coord in coords:
            p = self.net.activate(coord)[0]
            if p < 0:
                p = 0
            elif p > 1:
                p = 1
            pred.append(p)

        return np.array(pred)
Ejemplo n.º 2
0
ds = SupervisedDataSet(len(inputs_training), len(target_training))
ds.setField('input', inputs_training)
ds.setField('target', target_training)

trainer = BackpropTrainer(n, ds)
trainer.trainUntilConvergence(verbose=True, validationProportion=0.15, maxEpochs=100, continueEpochs=10)

for i in range(700):
    mse = trainer.train()
    rmse = np.sqrt(mse)
    print "training RSME, epoch {}: {}".format(i+1, rmse)

#==============================================================================
# trainer = BackpropTrainer(n, ds, learningrate=0.01, momentum=0.1)
# 
# for epoch in range(1, 100000000):
#     if epoch % 10000000 == 0:
#         error = trainer.train()
#         print 'Epoch: ', epoch
#         print 'Error: ', error
#==============================================================================

predict = np.array([n.activate(x) for x in inputs_validation])

plt.plot(predict, color='blue', label='predict')
plt.plot(target_validation, color='red', label='target')
plt.legend(loc='best')

print 'True'
Ejemplo n.º 3
0
ds.setField('target', target_training)

trainer = BackpropTrainer(n, ds)
trainer.trainUntilConvergence(verbose=True,
                              validationProportion=0.15,
                              maxEpochs=100,
                              continueEpochs=10)

for i in range(700):
    mse = trainer.train()
    rmse = np.sqrt(mse)
    print "training RSME, epoch {}: {}".format(i + 1, rmse)

#==============================================================================
# trainer = BackpropTrainer(n, ds, learningrate=0.01, momentum=0.1)
#
# for epoch in range(1, 100000000):
#     if epoch % 10000000 == 0:
#         error = trainer.train()
#         print 'Epoch: ', epoch
#         print 'Error: ', error
#==============================================================================

predict = np.array([n.activate(x) for x in inputs_validation])

plt.plot(predict, color='blue', label='predict')
plt.plot(target_validation, color='red', label='target')
plt.legend(loc='best')

print 'True'