Ejemplo n.º 1
0
def main():
    parser = argparse.ArgumentParser()  # Automatically includes help
    parser.add_argument('-arm', required=True)
    parser.add_argument('-grasp', required=True)
    parser.add_argument('-viewer', action='store_true', help='enable viewer.')
    args = parser.parse_args()

    arm = args.arm
    other_arm = get_other_arm(arm)
    grasp_type = args.grasp

    connect(use_gui=args.viewer)
    add_data_path()

    with HideOutput():
        robot = load_pybullet(DRAKE_PR2_URDF)
    set_group_conf(robot, 'torso', [0.2])
    set_arm_conf(robot, arm, get_carry_conf(arm, grasp_type))
    set_arm_conf(robot, other_arm, arm_conf(other_arm, REST_LEFT_ARM))

    #plane = p.loadURDF("plane.urdf")
    #table = p.loadURDF("table/table.urdf", 0, 0, 0, 0, 0, 0.707107, 0.707107)
    table = create_table()
    box = create_box(.07, .07, .14)

    #create_inverse_reachability(robot, box, table, arm=arm, grasp_type=grasp_type)
    create_inverse_reachability2(robot,
                                 box,
                                 table,
                                 arm=arm,
                                 grasp_type=grasp_type)
    disconnect()
Ejemplo n.º 2
0
 def __init__(self, task, use_robot=True, visualize=False, **kwargs):
     self.task = task
     self.real_world = None
     self.visualize = visualize
     self.client_saver = None
     self.client = connect(use_gui=visualize, **kwargs)
     print('Planner connected to client {}.'.format(self.client))
     self.robot = None
     with ClientSaver(self.client):
         with HideOutput():
             if use_robot:
                 self.robot = load_pybullet(os.path.join(
                     get_models_path(), PR2_URDF),
                                            fixed_base=True)
             #dump_body(self.robot)
     #compute_joint_weights(self.robot)
     self.world_name = 'world'
     self.world_pose = Pose(unit_pose())
     self.bodies = {}
     self.fixed = []
     self.surfaces = []
     self.items = []
     #self.holding_liquid = []
     self.initial_config = None
     self.initial_poses = {}
     self.body_mapping = {}
Ejemplo n.º 3
0
def load_plane(z=-1e-3):
    add_data_path()
    plane = load_pybullet('plane.urdf', fixed_base=True)
    #plane = load_model('plane.urdf')
    if z is not None:
        set_point(plane, Point(z=z))
    return plane
Ejemplo n.º 4
0
def pick_problem(arm='left', grasp_type='side'):
    other_arm = get_other_arm(arm)
    initial_conf = get_carry_conf(arm, grasp_type)

    pr2 = create_pr2()
    set_base_values(pr2, (0, -1.2, np.pi / 2))
    set_arm_conf(pr2, arm, initial_conf)
    open_arm(pr2, arm)
    set_arm_conf(pr2, other_arm, arm_conf(other_arm, REST_LEFT_ARM))
    close_arm(pr2, other_arm)

    plane = create_floor()
    table = load_pybullet(TABLE_URDF)
    # table = create_table(height=0.8)
    # table = load_pybullet("table_square/table_square.urdf")
    box = create_box(.07, .05, .25)
    set_point(box, (-0.25, -0.3, TABLE_MAX_Z + .25 / 2))
    # set_point(box, (0.2, -0.2, 0.8 + .25/2 + 0.1))

    return Problem(robot=pr2,
                   movable=[box],
                   arms=[arm],
                   grasp_types=[grasp_type],
                   surfaces=[table],
                   goal_conf=get_pose(pr2),
                   goal_holding=[(arm, box)])
Ejemplo n.º 5
0
def main():
    # TODO: move to pybullet-planning for now
    parser = argparse.ArgumentParser()
    parser.add_argument('-viewer',
                        action='store_true',
                        help='enable the viewer while planning')
    args = parser.parse_args()
    print(args)

    connect(use_gui=True)
    with LockRenderer():
        draw_pose(unit_pose(), length=1)
        floor = create_floor()
        with HideOutput():
            robot = load_pybullet(get_model_path(ROOMBA_URDF),
                                  fixed_base=True,
                                  scale=2.0)
            for link in get_all_links(robot):
                set_color(robot, link=link, color=ORANGE)
            robot_z = stable_z(robot, floor)
            set_point(robot, Point(z=robot_z))
        #set_base_conf(robot, rover_confs[i])

        data_path = add_data_path()
        shelf, = load_model(os.path.join(data_path, KIVA_SHELF_SDF),
                            fixed_base=True)  # TODO: returns a tuple
        dump_body(shelf)
        #draw_aabb(get_aabb(shelf))

    wait_for_user()
    disconnect()
Ejemplo n.º 6
0
def add_scales(task, ros_world):
    scale_stackings = {}
    holding = {grasp.obj_name for grasp in task.init_holding.values()}
    with ClientSaver(ros_world.client):
        perception = ros_world.perception
        items = sorted(set(perception.get_items()) - holding,
                       key=lambda n: get_point(ros_world.get_body(n))[1],
                       reverse=False)  # Right to left
        for i, item in enumerate(items):
            if not POUR and (get_type(item) != SCOOP_CUP):
                continue
            item_body = ros_world.get_body(item)
            scale = create_name(SCALE_TYPE, i + 1)
            with HideOutput():
                scale_body = load_pybullet(get_body_urdf(get_type(scale)),
                                           fixed_base=True)
            ros_world.perception.sim_bodies[scale] = scale_body
            ros_world.perception.sim_items[scale] = None
            item_z = stable_z(item_body, scale_body)
            scale_pose_item = Pose(
                point=Point(z=-item_z))  # TODO: relies on origin in base
            set_pose(scale_body, multiply(get_pose(item_body),
                                          scale_pose_item))
            roll, pitch, _ = get_euler(scale_body)
            set_euler(scale_body, [roll, pitch, 0])
            scale_stackings[scale] = item
        #wait_for_user()
    return scale_stackings
Ejemplo n.º 7
0
def main():
    parser = argparse.ArgumentParser()  # Automatically includes help
    parser.add_argument('-viewer', action='store_true', help='enable viewer.')
    args = parser.parse_args()

    connect(use_gui=True)

    with LockRenderer():
        draw_pose(unit_pose(), length=1, width=1)
        floor = create_floor()
        set_point(floor, Point(z=-EPSILON))

        table1 = create_table(width=TABLE_WIDTH, length=TABLE_WIDTH/2, height=TABLE_WIDTH/2,
                              top_color=TAN, cylinder=False)
        set_point(table1, Point(y=+0.5))

        table2 = create_table(width=TABLE_WIDTH, length=TABLE_WIDTH/2, height=TABLE_WIDTH/2,
                              top_color=TAN, cylinder=False)
        set_point(table2, Point(y=-0.5))

        tables = [table1, table2]

        #set_euler(table1, Euler(yaw=np.pi/2))
        with HideOutput():
            # data_path = add_data_path()
            # robot_path = os.path.join(data_path, WSG_GRIPPER)
            robot_path = get_model_path(WSG_50_URDF)  # WSG_50_URDF | PANDA_HAND_URDF
            robot = load_pybullet(robot_path, fixed_base=True)
            #dump_body(robot)

        block1 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=RED)
        block_z = stable_z(block1, table1)
        set_point(block1, Point(y=-0.5, z=block_z))

        block2 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=GREEN)
        set_point(block2, Point(x=-0.25, y=-0.5, z=block_z))

        block3 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=BLUE)
        set_point(block3, Point(x=-0.15, y=+0.5, z=block_z))

        blocks = [block1, block2, block3]

        set_camera_pose(camera_point=Point(x=-1, z=block_z+1), target_point=Point(z=block_z))

    block_pose = get_pose(block1)
    open_gripper(robot)
    tool_link = link_from_name(robot, 'tool_link')
    base_from_tool = get_relative_pose(robot, tool_link)
    #draw_pose(unit_pose(), parent=robot, parent_link=tool_link)
    grasps = get_side_grasps(block1, tool_pose=Pose(euler=Euler(yaw=np.pi/2)),
                             top_offset=0.02, grasp_length=0.03, under=False)[1:2]
    for grasp in grasps:
        gripper_pose = multiply(block_pose, invert(grasp))
        set_pose(robot, multiply(gripper_pose, invert(base_from_tool)))
        wait_for_user()

    wait_for_user('Finish?')
    disconnect()
Ejemplo n.º 8
0
def load_robot():
    root_directory = os.path.dirname(os.path.abspath(__file__))
    kuka_path = os.path.join(root_directory, KUKA_DIR, KUKA_PATH)
    with HideOutput():
        robot = load_pybullet(kuka_path, fixed_base=True)
        #print([get_max_velocity(robot, joint) for joint in get_movable_joints(robot)])
        set_static(robot)
        set_configuration(robot, INITIAL_CONF)
    return robot
Ejemplo n.º 9
0
 def add_body(self, name, **kwargs):
     obj_type = type_from_name(name)
     self.names_from_type.setdefault(obj_type, []).append(name)
     path = get_obj_path(obj_type)
     #self.path_from_name[name] = path
     print('Loading', path)
     body = load_pybullet(path, **kwargs)
     assert body is not None
     self.add(name, body)
Ejemplo n.º 10
0
def main(use_pr2_drake=True):
    connect(use_gui=True)
    add_data_path()

    plane = p.loadURDF("plane.urdf")
    table_path = "models/table_collision/table.urdf"
    table = load_pybullet(table_path, fixed_base=True)
    set_quat(table, quat_from_euler(Euler(yaw=PI / 2)))
    # table/table.urdf, table_square/table_square.urdf, cube.urdf, block.urdf, door.urdf
    obstacles = [plane, table]

    pr2_urdf = DRAKE_PR2_URDF if use_pr2_drake else PR2_URDF
    with HideOutput():
        pr2 = load_model(pr2_urdf, fixed_base=True)  # TODO: suppress warnings?
    dump_body(pr2)

    z = base_aligned_z(pr2)
    print(z)
    #z = stable_z_on_aabb(pr2, AABB(np.zeros(3), np.zeros(3)))
    print(z)

    set_point(pr2, Point(z=z))
    print(get_aabb(pr2))
    wait_if_gui()

    base_start = (-2, -2, 0)
    base_goal = (2, 2, 0)
    arm_start = SIDE_HOLDING_LEFT_ARM
    #arm_start = TOP_HOLDING_LEFT_ARM
    #arm_start = REST_LEFT_ARM
    arm_goal = TOP_HOLDING_LEFT_ARM
    #arm_goal = SIDE_HOLDING_LEFT_ARM

    left_joints = joints_from_names(pr2, PR2_GROUPS['left_arm'])
    right_joints = joints_from_names(pr2, PR2_GROUPS['right_arm'])
    torso_joints = joints_from_names(pr2, PR2_GROUPS['torso'])
    set_joint_positions(pr2, left_joints, arm_start)
    set_joint_positions(pr2, right_joints,
                        rightarm_from_leftarm(REST_LEFT_ARM))
    set_joint_positions(pr2, torso_joints, [0.2])
    open_arm(pr2, 'left')
    # test_ikfast(pr2)

    add_line(base_start, base_goal, color=RED)
    print(base_start, base_goal)
    if use_pr2_drake:
        test_drake_base_motion(pr2, base_start, base_goal, obstacles=obstacles)
    else:
        test_base_motion(pr2, base_start, base_goal, obstacles=obstacles)

    test_arm_motion(pr2, left_joints, arm_goal)
    # test_arm_control(pr2, left_joints, arm_start)

    wait_if_gui('Finish?')
    disconnect()
Ejemplo n.º 11
0
    def _create_robot(self):
        with ClientSaver(self.client):
            with HideOutput():
                pr2_path = os.path.join(get_models_path(), PR2_URDF)
                self.pr2 = load_pybullet(pr2_path, fixed_base=True)

            # Base link is the origin
            base_pose = get_link_pose(self.robot,
                                      link_from_name(self.robot, BASE_FRAME))
            set_pose(self.robot, invert(base_pose))
        return self.pr2
Ejemplo n.º 12
0
def add_holding(task, ros_world):
    with ClientSaver(ros_world.client):
        for arm, grasp in task.init_holding.items():
            name = grasp.obj_name
            body = load_pybullet(get_body_urdf(get_type(name)),
                                 fixed_base=False)
            ros_world.perception.sim_bodies[name] = body
            ros_world.perception.sim_items[name] = None
            attachment = get_grasp_attachment(ros_world, arm, grasp)
            attachment.assign()
            ros_world.controller.attach(get_arm_prefix(arm), name)
Ejemplo n.º 13
0
def main(display='execute'): # control | execute | step
    # One of the arm's gantry carriage is fixed when the other is moving.
    connect(use_gui=True)
    set_camera(yaw=-90, pitch=-40, distance=10, target_position=(0, 7.5, 0))
    draw_pose(unit_pose(), length=1.0)
    disable_real_time()

    with HideOutput():
        root_directory = os.path.dirname(os.path.abspath(__file__))
        robot = load_pybullet(os.path.join(root_directory, ETH_RFL_URDF), fixed_base=True)
    # floor = load_model('models/short_floor.urdf')
    block = load_model(BLOCK_URDF, fixed_base=False)
    #link = link_from_name(robot, 'gantry_base_link')
    #print(get_aabb(robot, link))

    block_x = -0.2
    #block_y = 1 if ARM == 'right' else 13.5
    #block_x = 10
    block_y = 5.

    # set_pose(floor, Pose(Point(x=floor_x, y=1, z=1.3)))
    # set_pose(block, Pose(Point(x=floor_x, y=0.6, z=stable_z(block, floor))))
    set_pose(block, Pose(Point(x=block_x, y=block_y, z=3.5)))
    # set_default_camera()
    dump_world()

    #print(get_camera())
    saved_world = WorldSaver()
    with LockRenderer():
        command = plan(robot, block, fixed=[], teleport=False) # fixed=[floor],
    if (command is None) or (display is None):
        print('Unable to find a plan! Quit?')
        wait_for_interrupt()
        disconnect()
        return

    saved_world.restore()
    update_state()
    print('{}?'.format(display))
    wait_for_interrupt()
    if display == 'control':
        enable_gravity()
        command.control(real_time=False, dt=0)
    elif display == 'execute':
        command.refine(num_steps=10).execute(time_step=0.002)
    elif display == 'step':
        command.step()
    else:
        raise ValueError(display)

    print('Quit?')
    wait_for_interrupt()
    disconnect()
Ejemplo n.º 14
0
 def load_body(self, name, pose=None, fixed_base=False):
     assert name not in self.sim_bodies
     ty = get_type(name)
     with ClientSaver(self.client):
         with HideOutput():
             body = load_cup_bowl(ty)
             if body is None:
                 body = load_pybullet(get_body_urdf(name),
                                      fixed_base=fixed_base)
         if pose is not None:
             set_pose(body, pose)
         self.sim_bodies[name] = body
         return body
Ejemplo n.º 15
0
def main():
    # https://github.com/ros-teleop/teleop_twist_keyboard
    # http://openrave.org/docs/latest_stable/_modules/openravepy/misc/#SetViewerUserThread

    connect(use_gui=True)
    add_data_path()
    load_pybullet("plane.urdf")
    #load_pybullet("models/table_collision/table.urdf")
    with HideOutput():
        pr2 = load_model(DRAKE_PR2_URDF, fixed_base=True)
    enable_gravity()
    enable_real_time(
    )  # TODO: won't work as well on OS X due to simulation thread

    #run_simulate(pr2)
    run_thread(pr2)
    # TODO: keep working on this
    #userthread = threading.Thread(target=run_thread, args=[pr2])
    #userthread.start()
    #userthread.join()

    disconnect()
Ejemplo n.º 16
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('-shape',
                        default='box',
                        choices=['box', 'sphere', 'cylinder', 'capsule'])
    parser.add_argument('-video', action='store_true')
    args = parser.parse_args()
    video = 'video.mp4' if args.video else None

    connect(use_gui=True, mp4=video)
    if video is not None:
        set_renderer(enable=False)

    draw_global_system()
    set_camera_pose(camera_point=Point(+1.5, -1.5, +1.5),
                    target_point=Point(-1.5, +1.5, 0))

    add_data_path()
    plane = load_pybullet('plane.urdf', fixed_base=True)
    #plane = load_model('plane.urdf')
    set_point(plane, Point(z=-1e-3))

    ramp = create_ramp()
    dump_body(ramp)

    obj = create_object(args.shape)
    set_euler(obj, np.random.uniform(-np.math.radians(1), np.math.radians(1),
                                     3))
    set_point(obj, np.random.uniform(-1e-3, +1e-3, 3))
    #set_velocity(obj, linear=Point(x=-1))
    set_position(obj, z=2.)
    #set_position(obj, z=base_aligned_z(obj))
    dump_body(obj)

    #add_pose_constraint(obj, pose=(target_point, target_quat), max_force=200)

    set_renderer(enable=True)
    if video is None:
        wait_if_gui('Begin?')
    simulate(controller=condition_controller(lambda step:
                                             (step != 0) and at_rest(obj)))
    if video is None:
        wait_if_gui('Finish?')
    disconnect()
Ejemplo n.º 17
0
def main(display='execute'):  # control | execute | step
    connect(use_gui=True)
    disable_real_time()

    with HideOutput():
        root_directory = os.path.dirname(os.path.abspath(__file__))
        robot = load_pybullet(os.path.join(root_directory, IRB6600_TRACK_URDF), fixed_base=True)
    floor = load_model('models/short_floor.urdf')
    block = load_model(BLOCK_URDF, fixed_base=False)
    floor_x = 2
    set_pose(floor, Pose(Point(x=floor_x, z=0.5)))
    set_pose(block, Pose(Point(x=floor_x, y=0, z=stable_z(block, floor))))
    # set_default_camera()
    dump_world()

    saved_world = WorldSaver()
    with LockRenderer():
        command = plan(robot, block, fixed=[floor], teleport=False)
    if (command is None) or (display is None):
        print('Unable to find a plan!')
        print('Quit?')
        wait_for_interrupt()
        disconnect()
        return

    saved_world.restore()
    update_state()
    user_input('{}?'.format(display))
    if display == 'control':
        enable_gravity()
        command.control(real_time=False, dt=0)
    elif display == 'execute':
        command.refine(num_steps=10).execute(time_step=0.002)
    elif display == 'step':
        command.step()
    else:
        raise ValueError(display)

    print('Quit?')
    wait_for_interrupt()
    disconnect()
Ejemplo n.º 18
0
 def add_camera(self,
                name,
                pose,
                camera_matrix,
                max_depth=KINECT_DEPTH,
                display=False):
     cone = get_viewcone(depth=max_depth,
                         camera_matrix=camera_matrix,
                         color=apply_alpha(RED, 0.1),
                         mass=0,
                         collision=False)
     set_pose(cone, pose)
     if display:
         kinect = load_pybullet(KINECT_URDF, fixed_base=True)
         set_pose(kinect, pose)
         set_color(kinect, BLACK)
         self.add(name, kinect)
     self.cameras[name] = Camera(cone, camera_matrix, max_depth)
     draw_pose(pose)
     step_simulation()
     return name
Ejemplo n.º 19
0
    def _initialize_environment(self):
        # wall to fridge: 4cm
        # fridge to goal: 1.5cm
        # hitman to range: 3.5cm
        # range to indigo: 3.5cm
        self.environment_poses = read_json(POSES_PATH)
        root_from_world = get_link_pose(self.kitchen, self.world_link)
        for name, world_from_part in self.environment_poses.items():
            if name in ['range']:
                continue
            visual_path = os.path.join(KITCHEN_LEFT_PATH,
                                       '{}.obj'.format(name))
            collision_path = os.path.join(KITCHEN_LEFT_PATH,
                                          '{}_collision.obj'.format(name))
            mesh_path = None
            for path in [collision_path, visual_path]:
                if os.path.exists(path):
                    mesh_path = path
                    break
            if mesh_path is None:
                continue
            body = load_pybullet(mesh_path, fixed_base=True)
            root_from_part = multiply(root_from_world, world_from_part)
            if name in ['axe', 'dishwasher', 'echo', 'fox', 'golf']:
                (pos, quat) = root_from_part
                # TODO: still not totally aligned
                pos = np.array(pos) + np.array([0, -0.035, 0])  # , -0.005])
                root_from_part = (pos, quat)
            self.environment_bodies[name] = body
            set_pose(body, root_from_part)
        # TODO: release bounding box or convex hull
        # TODO: static object nonconvex collisions

        if TABLE_NAME in self.environment_bodies:
            body = self.environment_bodies[TABLE_NAME]
            _, (w, l, _) = approximate_as_prism(body)
            _, _, z = get_point(body)
            new_pose = Pose(Point(TABLE_X + l / 2, -TABLE_Y, z),
                            Euler(yaw=np.pi / 2))
            set_pose(body, new_pose)
Ejemplo n.º 20
0
def main():
    connect(use_gui=True)
    add_data_path()
    draw_pose(Pose(), length=1.)
    set_camera_pose(camera_point=[1, -1, 1])

    plane = p.loadURDF("plane.urdf")
    with LockRenderer():
        with HideOutput(True):
            robot = load_pybullet(FRANKA_URDF, fixed_base=True)
            assign_link_colors(robot, max_colors=3, s=0.5, v=1.)
            #set_all_color(robot, GREEN)
    obstacles = [plane]  # TODO: collisions with the ground

    dump_body(robot)
    print('Start?')
    wait_for_user()

    info = PANDA_INFO
    tool_link = link_from_name(robot, 'panda_hand')
    draw_pose(Pose(), parent=robot, parent_link=tool_link)
    joints = get_movable_joints(robot)
    print('Joints', [get_joint_name(robot, joint) for joint in joints])
    check_ik_solver(info)

    sample_fn = get_sample_fn(robot, joints)
    for i in range(10):
        print('Iteration:', i)
        conf = sample_fn()
        set_joint_positions(robot, joints, conf)
        wait_for_user()
        #test_ik(robot, info, tool_link, get_link_pose(robot, tool_link))
        test_retraction(robot,
                        info,
                        tool_link,
                        use_pybullet=False,
                        max_distance=0.1,
                        max_time=0.05,
                        max_candidates=100)
    disconnect()
Ejemplo n.º 21
0
def create_table_bodies(world, item_ranges, randomize=True):
    perception = world.perception
    with HideOutput():
        add_data_path()
        floor_body = load_pybullet("plane.urdf")
        set_pose(floor_body, get_pose(world.robot))
        add_table(world)
        for name, limits in sorted(item_ranges.items()):
            perception.sim_items[name] = None
            if randomize:
                body = randomize_body(name,
                                      width_range=limits.width_range,
                                      height_range=limits.height_range,
                                      mass_range=limits.mass_range)
            else:
                body = load_body(name)
            perception.sim_bodies[name] = body
            # perception.add_item(name, unit_pose())
            x, y, yaw = np.random.uniform(*limits.pose2d_range)
            surface_body = perception.get_body(limits.surface)
            z = stable_z(body, surface_body) + Z_EPSILON
            pose = Pose((x, y, z), Euler(yaw=yaw))
            perception.set_pose(name, *pose)
Ejemplo n.º 22
0
    def __init__(self,
                 robot_name=FRANKA_CARTER,
                 use_gui=True,
                 full_kitchen=False):
        self.task = None
        self.interface = None
        self.client = connect(use_gui=use_gui)
        set_real_time(False)
        #set_caching(False) # Seems to make things worse
        disable_gravity()
        add_data_path()
        set_camera_pose(camera_point=[2, -1.5, 1])
        if DEBUG:
            draw_pose(Pose(), length=3)

        #self.kitchen_yaml = load_yaml(KITCHEN_YAML)
        with HideOutput(enable=True):
            self.kitchen = load_pybullet(KITCHEN_PATH,
                                         fixed_base=True,
                                         cylinder=True)

        self.floor = load_pybullet('plane.urdf', fixed_base=True)
        z = stable_z(self.kitchen, self.floor) - get_point(self.floor)[2]
        point = np.array(get_point(self.kitchen)) - np.array([0, 0, z])
        set_point(self.floor, point)

        self.robot_name = robot_name
        if self.robot_name == FRANKA_CARTER:
            urdf_path, yaml_path = FRANKA_CARTER_PATH, None
            #urdf_path, yaml_path = FRANKA_CARTER_PATH, FRANKA_YAML
        #elif self.robot_name == EVE:
        #    urdf_path, yaml_path = EVE_PATH, None
        else:
            raise ValueError(self.robot_name)
        self.robot_yaml = yaml_path if yaml_path is None else load_yaml(
            yaml_path)
        with HideOutput(enable=True):
            self.robot = load_pybullet(urdf_path)
        #dump_body(self.robot)
        #chassis_pose = get_link_pose(self.robot, link_from_name(self.robot, 'chassis_link'))
        #wheel_pose = get_link_pose(self.robot, link_from_name(self.robot, 'left_wheel_link'))
        #wait_for_user()
        set_point(self.robot, Point(z=stable_z(self.robot, self.floor)))
        self.set_initial_conf()
        self.gripper = create_gripper(self.robot)

        self.environment_bodies = {}
        if full_kitchen:
            self._initialize_environment()
        self._initialize_ik(urdf_path)
        self.initial_saver = WorldSaver()

        self.body_from_name = {}
        # self.path_from_name = {}
        self.names_from_type = {}
        self.custom_limits = {}
        self.base_limits_handles = []
        self.cameras = {}

        self.disabled_collisions = set()
        if self.robot_name == FRANKA_CARTER:
            self.disabled_collisions.update(
                tuple(link_from_name(self.robot, link) for link in pair)
                for pair in DISABLED_FRANKA_COLLISIONS)

        self.carry_conf = FConf(self.robot, self.arm_joints, self.default_conf)
        #self.calibrate_conf = Conf(self.robot, self.arm_joints, load_calibrate_conf(side='left'))
        self.calibrate_conf = FConf(
            self.robot, self.arm_joints,
            self.default_conf)  # Must differ from carry_conf
        self.special_confs = [self.carry_conf]  #, self.calibrate_conf]
        self.open_gq = FConf(self.robot, self.gripper_joints,
                             get_max_limits(self.robot, self.gripper_joints))
        self.closed_gq = FConf(self.robot, self.gripper_joints,
                               get_min_limits(self.robot, self.gripper_joints))
        self.gripper_confs = [self.open_gq, self.closed_gq]
        self.open_kitchen_confs = {
            joint: FConf(self.kitchen, [joint], [self.open_conf(joint)])
            for joint in self.kitchen_joints
        }
        self.closed_kitchen_confs = {
            joint: FConf(self.kitchen, [joint], [self.closed_conf(joint)])
            for joint in self.kitchen_joints
        }
        self._update_custom_limits()
        self._update_initial()
Ejemplo n.º 23
0
def load_pick_and_place(extrusion_name, scale=MILLIMETER, max_bricks=6):
    assert extrusion_name == 'choreo_brick_demo'
    root_directory = os.path.dirname(os.path.abspath(__file__))
    bricks_directory = os.path.join(root_directory, PICKNPLACE_DIRECTORY,
                                    'bricks')
    print('Name: {}'.format(extrusion_name))
    with open(
            os.path.join(bricks_directory,
                         PICKNPLACE_FILENAMES[extrusion_name]), 'r') as f:
        json_data = json.loads(f.read())

    kuka_urdf = '../conrob_pybullet/models/kuka_kr6_r900/urdf/kuka_kr6_r900_mit_suction_gripper.urdf'
    obj_directory = os.path.join(bricks_directory, 'meshes', 'collision')
    with HideOutput():
        #world = load_pybullet(os.path.join(bricks_directory, 'urdf', 'brick_demo.urdf'))
        robot = load_pybullet(os.path.join(root_directory, kuka_urdf),
                              fixed_base=True)
    #set_point(robot, (0.14, 0, 0))
    #dump_body(robot)

    pick_base_point = parse_point(json_data['pick_base_center_point'])
    draw_pose((pick_base_point, unit_quat()))
    place_base_point = parse_point(json_data['place_base_center_point'])
    draw_pose((place_base_point, unit_quat()))

    # workspace_geo_place_support_object_11 = pick_left_over_bricks_11
    obstacle_from_name = {}
    for filename in json_data['pick_support_surface_file_names']:
        obstacle_from_name[strip_extension(filename)] = \
            create_obj(os.path.join(obj_directory, filename), scale=scale, color=(0.5, 0.5, 0.5, 1))
    for filename in json_data['place_support_surface_file_names']:
        obstacle_from_name[strip_extension(filename)] = \
            create_obj(os.path.join(obj_directory, filename), scale=scale, color=(1., 0., 0., 1))

    brick_from_index = {}
    for json_element in json_data['sequenced_elements']:
        index = json_element['order_id']
        pick_body = create_obj(os.path.join(
            obj_directory, json_element['pick_element_geometry_file_name']),
                               scale=scale,
                               color=(0, 0, 1, 1))
        add_body_name(pick_body, index)
        #place_body = create_obj(os.path.join(obj_directory, json_element['place_element_geometry_file_name']),
        #                        scale=scale, color=(0, 1, 0, 1))
        #add_body_name(place_body, name)
        world_from_obj_pick = get_pose(pick_body)

        # [u'pick_grasp_plane', u'pick_grasp_retreat_plane', u'place_grasp_retreat_plane',
        #  u'pick_grasp_approach_plane', u'place_grasp_approach_plane', u'place_grasp_plane']
        ee_grasp_poses = [{
            name: pose_from_tform(parse_transform(approach))
            for name, approach in json_grasp.items()
        } for json_grasp in json_element['grasps']]

        # pick_grasp_plane is at the top of the object with z facing downwards
        grasp_index = 0
        world_from_ee_pick = ee_grasp_poses[grasp_index]['pick_grasp_plane']
        world_from_ee_place = ee_grasp_poses[grasp_index]['place_grasp_plane']
        #draw_pose(world_from_ee_pick, length=0.04)
        #draw_pose(world_from_ee_place, length=0.04)

        ee_from_obj = multiply(invert(world_from_ee_pick),
                               world_from_obj_pick)  # Using pick frame
        world_from_obj_place = multiply(world_from_ee_place, ee_from_obj)
        #set_pose(pick_body, world_from_obj_place)

        grasps = [
            Grasp(
                index, num, *[
                    multiply(invert(world_from_ee_pick[name]),
                             world_from_obj_pick) for name in GRASP_NAMES
                ]) for num, world_from_ee_pick in enumerate(ee_grasp_poses)
        ]
        brick_from_index[index] = Brick(
            index=index,
            body=pick_body,
            initial_pose=WorldPose(index, world_from_obj_pick),
            goal_pose=WorldPose(index, world_from_obj_place),
            grasps=grasps,
            goal_supports=json_element.get('place_contact_ngh_ids', []))
        # pick_contact_ngh_ids are movable element contact partial orders
        # pick_support_surface_file_names are fixed element contact partial orders

    return robot, brick_from_index, obstacle_from_name
def problem1(n_obstacles=10, wall_side=0.1, obst_width=0.25, obst_height=0.5):
    floor_extent = 5.0
    base_limits = (-floor_extent / 2. * np.ones(2),
                   +floor_extent / 2. * np.ones(2))

    floor_height = 0.001
    floor = create_box(floor_extent, floor_extent, floor_height, color=TAN)
    set_point(floor, Point(z=-floor_height / 2.))

    wall1 = create_box(floor_extent + wall_side,
                       wall_side,
                       wall_side,
                       color=GREY)
    set_point(wall1, Point(y=floor_extent / 2., z=wall_side / 2.))
    wall2 = create_box(floor_extent + wall_side,
                       wall_side,
                       wall_side,
                       color=GREY)
    set_point(wall2, Point(y=-floor_extent / 2., z=wall_side / 2.))
    wall3 = create_box(wall_side,
                       floor_extent + wall_side,
                       wall_side,
                       color=GREY)
    set_point(wall3, Point(x=floor_extent / 2., z=wall_side / 2.))
    wall4 = create_box(wall_side,
                       floor_extent + wall_side,
                       wall_side,
                       color=GREY)
    set_point(wall4, Point(x=-floor_extent / 2., z=wall_side / 2.))
    wall5 = create_box(obst_width, obst_width, obst_height, color=GREY)
    set_point(wall5, Point(z=obst_height / 2.))
    walls = [wall1, wall2, wall3, wall4, wall5]

    initial_surfaces = OrderedDict()
    for _ in range(n_obstacles - 1):
        body = create_box(obst_width, obst_width, obst_height, color=GREY)
        initial_surfaces[body] = floor
    pillars = list(initial_surfaces)
    obstacles = walls + pillars

    initial_conf = np.array([+floor_extent / 3, -floor_extent / 3, 3 * PI / 4])
    goal_conf = -initial_conf

    robot = load_pybullet(TURTLEBOT_URDF,
                          fixed_base=True,
                          merge=True,
                          sat=False)
    base_joints = joints_from_names(robot, BASE_JOINTS)
    # base_link = child_link_from_joint(base_joints[-1])
    base_link = link_from_name(robot, BASE_LINK_NAME)
    set_all_color(robot, BLUE)
    dump_body(robot)
    set_point(robot, Point(z=stable_z(robot, floor)))
    #set_point(robot, Point(z=base_aligned_z(robot)))
    draw_pose(Pose(), parent=robot, parent_link=base_link, length=0.5)
    set_joint_positions(robot, base_joints, initial_conf)

    sample_placements(
        initial_surfaces,
        obstacles=[robot] + walls,
        savers=[BodySaver(robot, joints=base_joints, positions=goal_conf)],
        min_distances=10e-2)

    # The first calls appear to be the slowest
    # times = []
    # for body1, body2 in combinations(pillars, r=2):
    #     start_time = time.time()
    #     colliding = pairwise_collision(body1, body2)
    #     runtime = elapsed_time(start_time)
    #     print(colliding, runtime)
    #     times.append(runtime)
    # print(times)

    return robot, base_limits, goal_conf, obstacles
Ejemplo n.º 25
0
def main():
    connect(use_gui=True)
    add_data_path()

    set_camera(0, -30, 1)
    plane = load_pybullet('plane.urdf', fixed_base=True)
    #plane = load_model('plane.urdf')
    cup = load_model('models/cup.urdf', fixed_base=True)
    #set_point(cup, Point(z=stable_z(cup, plane)))
    set_point(cup, Point(z=.2))
    set_color(cup, (1, 0, 0, .4))

    num_droplets = 100
    #radius = 0.025
    #radius = 0.005
    radius = 0.0025
    # TODO: more efficient ways to make all of these
    droplets = [create_sphere(radius, mass=0.01)
                for _ in range(num_droplets)]  # kg
    cup_thickness = 0.001

    lower, upper = get_lower_upper(cup)
    print(lower, upper)
    buffer = cup_thickness + radius
    lower = np.array(lower) + buffer * np.ones(len(lower))
    upper = np.array(upper) - buffer * np.ones(len(upper))

    limits = zip(lower, upper)
    x_range, y_range = limits[:2]
    z = upper[2] + 0.1
    #x_range = [-1, 1]
    #y_range = [-1, 1]
    #z = 1
    for droplet in droplets:
        x = np.random.uniform(*x_range)
        y = np.random.uniform(*y_range)
        set_point(droplet, Point(x, y, z))

    for i, droplet in enumerate(droplets):
        x, y = np.random.normal(0, 1e-3, 2)
        set_point(droplet, Point(x, y, z + i * (2 * radius + 1e-3)))

    #dump_world()
    wait_for_user()

    #user_input('Start?')
    enable_gravity()
    simulate_for_duration(5.0)

    # enable_real_time()
    # try:
    #     while True:
    #         enable_gravity() # enable_real_time requires a command
    #         #time.sleep(dt)
    # except KeyboardInterrupt:
    #     pass
    # print()

    #time.sleep(1.0)
    wait_for_user('Finish?')
    disconnect()
Ejemplo n.º 26
0
 def add_body(self, name, fixed=True):
     self.bodies[name] = load_pybullet(get_body_urdf(name),
                                       fixed_base=fixed)
     return self.bodies[name]
Ejemplo n.º 27
0
def main(use_turtlebot=True):
    parser = argparse.ArgumentParser()
    parser.add_argument('-sim', action='store_true')
    parser.add_argument('-video', action='store_true')
    args = parser.parse_args()
    video = 'video.mp4' if args.video else None

    connect(use_gui=True, mp4=video)
    #set_renderer(enable=False)
    # print(list_pybullet_data())
    # print(list_pybullet_robots())

    draw_global_system()
    set_camera_pose(camera_point=Point(+1.5, -1.5, +1.5),
                    target_point=Point(-1.5, +1.5, 0))

    plane = load_plane()
    #door = load_pybullet('models/door.urdf', fixed_base=True) # From drake
    #set_point(door, Point(z=-.1))
    door = create_door()
    #set_position(door, z=base_aligned_z(door))
    set_point(door, base_aligned(door))
    #set_collision_margin(door, link=0, margin=0.)
    set_configuration(door, [math.radians(-5)])
    dump_body(door)

    door_joint = get_movable_joints(door)[0]
    door_link = child_link_from_joint(door_joint)
    #draw_pose(get_com_pose(door, door_link), parent=door, parent_link=door_link)
    draw_pose(Pose(), parent=door, parent_link=door_link)
    wait_if_gui()

    ##########

    start_x = +2
    target_x = -start_x
    if not use_turtlebot:
        side = 0.25
        robot = create_box(w=side, l=side, h=side, mass=5., color=BLUE)
        set_position(robot, x=start_x)
        #set_velocity(robot, linear=Point(x=-1))
    else:
        turtlebot_urdf = os.path.abspath(TURTLEBOT_URDF)
        print(turtlebot_urdf)
        #print(read(turtlebot_urdf))
        robot = load_pybullet(turtlebot_urdf, merge=True, fixed_base=True)
        robot_joints = get_movable_joints(robot)[:3]
        set_joint_positions(robot, robot_joints, [start_x, 0, PI])
    set_all_color(robot, BLUE)
    set_position(robot, z=base_aligned_z(robot))
    dump_body(robot)

    ##########

    set_renderer(enable=True)
    #test_door(door)
    if args.sim:
        test_simulation(robot, target_x, video)
    else:
        assert use_turtlebot  # TODO: extend to the block
        test_kinematic(robot, door, target_x)
    disconnect()
Ejemplo n.º 28
0
def main():
    parser = argparse.ArgumentParser()  # Automatically includes help
    parser.add_argument('-viewer', action='store_true', help='enable viewer.')
    args = parser.parse_args()

    connect(use_gui=True)
    #ycb_path = os.path.join(DRAKE_PATH, DRAKE_YCB)
    #ycb_path = os.path.join(YCB_PATH, YCB_TEMPLATE.format('003_cracker_box'))
    #print(ycb_path)
    #load_pybullet(ycb_path)

    with LockRenderer():
        draw_pose(unit_pose(), length=1, width=1)
        floor = create_floor()
        set_point(floor, Point(z=-EPSILON))
        table = create_table(width=TABLE_WIDTH,
                             length=TABLE_WIDTH / 2,
                             height=TABLE_WIDTH / 2,
                             top_color=TAN,
                             cylinder=False)
        #set_euler(table, Euler(yaw=np.pi/2))
        with HideOutput(False):
            # data_path = add_data_path()
            # robot_path = os.path.join(data_path, WSG_GRIPPER)
            robot_path = get_model_path(
                WSG_50_URDF)  # WSG_50_URDF | PANDA_HAND_URDF
            #robot_path = get_file_path(__file__, 'mit_arch_suction_gripper/mit_arch_suction_gripper.urdf')
            robot = load_pybullet(robot_path, fixed_base=True)
            #dump_body(robot)
            #robot = create_cylinder(radius=0.5*BLOCK_SIDE, height=4*BLOCK_SIDE) # vacuum gripper

        block1 = create_box(w=BLOCK_SIDE,
                            l=BLOCK_SIDE,
                            h=BLOCK_SIDE,
                            color=RED)
        block_z = stable_z(block1, table)
        set_point(block1, Point(z=block_z))

        block2 = create_box(w=BLOCK_SIDE,
                            l=BLOCK_SIDE,
                            h=BLOCK_SIDE,
                            color=GREEN)
        set_point(block2, Point(x=+0.25, z=block_z))

        block3 = create_box(w=BLOCK_SIDE,
                            l=BLOCK_SIDE,
                            h=BLOCK_SIDE,
                            color=BLUE)
        set_point(block3, Point(x=-0.15, z=block_z))

        blocks = [block1, block2, block3]

        add_line(Point(x=-TABLE_WIDTH / 2,
                       z=block_z - BLOCK_SIDE / 2 + EPSILON),
                 Point(x=+TABLE_WIDTH / 2,
                       z=block_z - BLOCK_SIDE / 2 + EPSILON),
                 color=RED)
        set_camera_pose(camera_point=Point(y=-1, z=block_z + 1),
                        target_point=Point(z=block_z))

    wait_for_user()
    block_pose = get_pose(block1)
    open_gripper(robot)
    tool_link = link_from_name(robot, 'tool_link')
    base_from_tool = get_relative_pose(robot, tool_link)
    #draw_pose(unit_pose(), parent=robot, parent_link=tool_link)

    y_grasp, x_grasp = get_top_grasps(block1,
                                      tool_pose=unit_pose(),
                                      grasp_length=0.03,
                                      under=False)
    grasp = y_grasp  # fingers won't collide
    gripper_pose = multiply(block_pose, invert(grasp))
    set_pose(robot, multiply(gripper_pose, invert(base_from_tool)))
    wait_for_user('Finish?')
    disconnect()