Ejemplo n.º 1
0
def get_grasps(world, name, grasp_types=GRASP_TYPES, pre_distance=APPROACH_DISTANCE, **kwargs):
    use_width = world.robot_name == FRANKA_CARTER
    body = world.get_body(name)
    #fraction = 0.25
    obj_type = type_from_name(name)
    body_pose = REFERENCE_POSE.get(obj_type, unit_pose())
    center, extent = approximate_as_prism(body, body_pose)

    for grasp_type in grasp_types:
        if not implies(world.is_real(), is_valid_grasp_type(name, grasp_type)):
            continue
        #assert is_valid_grasp_type(name, grasp_type)
        if grasp_type == TOP_GRASP:
            grasp_length = 1.5 * FINGER_EXTENT[2]  # fraction = 0.5
            pre_direction = pre_distance * get_unit_vector([0, 0, 1])
            post_direction = unit_point()
            generator = get_top_grasps(body, under=True, tool_pose=TOOL_POSE, body_pose=body_pose,
                                       grasp_length=grasp_length, max_width=np.inf, **kwargs)
        elif grasp_type == SIDE_GRASP:
            # Take max of height and something
            grasp_length = 1.75 * FINGER_EXTENT[2]  # No problem if pushing a little
            x, z = pre_distance * get_unit_vector([3, -1])
            pre_direction = [0, 0, x]
            post_direction = [0, 0, z]
            top_offset = extent[2] / 2 if obj_type in MID_SIDE_GRASPS else 1.0*FINGER_EXTENT[0]
            # Under grasps are actually easier for this robot
            # TODO: bug in under in that it grasps at the bottom
            generator = get_side_grasps(body, under=False, tool_pose=TOOL_POSE, body_pose=body_pose,
                                        grasp_length=grasp_length, top_offset=top_offset, max_width=np.inf, **kwargs)
            # if world.robot_name == FRANKA_CARTER else unit_pose()
            generator = (multiply(Pose(euler=Euler(yaw=yaw)), grasp)
                         for grasp in generator for yaw in [0, np.pi])
        else:
            raise ValueError(grasp_type)
        grasp_poses = randomize(list(generator))
        if obj_type in CYLINDERS:
            # TODO: filter first
            grasp_poses = (multiply(grasp_pose, Pose(euler=Euler(
                yaw=random.uniform(-math.pi, math.pi)))) for grasp_pose in cycle(grasp_poses))
        for i, grasp_pose in enumerate(grasp_poses):
            pregrasp_pose = multiply(Pose(point=pre_direction), grasp_pose,
                                     Pose(point=post_direction))
            grasp = Grasp(world, name, grasp_type, i, grasp_pose, pregrasp_pose)
            with BodySaver(body):
                grasp.get_attachment().assign()
                with BodySaver(world.robot):
                    grasp.grasp_width = close_until_collision(
                        world.robot, world.gripper_joints, bodies=[body])
            #print(get_joint_positions(world.robot, world.arm_joints)[-1])
            #draw_pose(unit_pose(), parent=world.robot, parent_link=world.tool_link)
            #grasp.get_attachment().assign()
            #wait_for_user()
            ##for value in get_joint_limits(world.robot, world.arm_joints[-1]):
            #for value in [-1.8973, 0, +1.8973]:
            #    set_joint_position(world.robot, world.arm_joints[-1], value)
            #    grasp.get_attachment().assign()
            #    wait_for_user()
            if use_width and (grasp.grasp_width is None):
                continue
            yield grasp
Ejemplo n.º 2
0
def main():
    # TODO: move to pybullet-planning for now
    parser = argparse.ArgumentParser()
    parser.add_argument('-viewer',
                        action='store_true',
                        help='enable the viewer while planning')
    args = parser.parse_args()
    print(args)

    connect(use_gui=True)
    with LockRenderer():
        draw_pose(unit_pose(), length=1)
        floor = create_floor()
        with HideOutput():
            robot = load_pybullet(get_model_path(ROOMBA_URDF),
                                  fixed_base=True,
                                  scale=2.0)
            for link in get_all_links(robot):
                set_color(robot, link=link, color=ORANGE)
            robot_z = stable_z(robot, floor)
            set_point(robot, Point(z=robot_z))
        #set_base_conf(robot, rover_confs[i])

        data_path = add_data_path()
        shelf, = load_model(os.path.join(data_path, KIVA_SHELF_SDF),
                            fixed_base=True)  # TODO: returns a tuple
        dump_body(shelf)
        #draw_aabb(get_aabb(shelf))

    wait_for_user()
    disconnect()
Ejemplo n.º 3
0
def create_world(items=[], **kwargs):
    state = {name: unit_pose() for name in items}
    with HideOutput():
        world = ROSWorld(sim_only=True, state=state, **kwargs) # state=[]
        table_body = add_table(world)
        create_floor()
    return world, table_body
Ejemplo n.º 4
0
 def __init__(self, task, use_robot=True, visualize=False, **kwargs):
     self.task = task
     self.real_world = None
     self.visualize = visualize
     self.client_saver = None
     self.client = connect(use_gui=visualize, **kwargs)
     print('Planner connected to client {}.'.format(self.client))
     self.robot = None
     with ClientSaver(self.client):
         with HideOutput():
             if use_robot:
                 self.robot = load_pybullet(os.path.join(
                     get_models_path(), PR2_URDF),
                                            fixed_base=True)
             #dump_body(self.robot)
     #compute_joint_weights(self.robot)
     self.world_name = 'world'
     self.world_pose = Pose(unit_pose())
     self.bodies = {}
     self.fixed = []
     self.surfaces = []
     self.items = []
     #self.holding_liquid = []
     self.initial_config = None
     self.initial_poses = {}
     self.body_mapping = {}
Ejemplo n.º 5
0
def main():
    parser = argparse.ArgumentParser()  # Automatically includes help
    parser.add_argument('-viewer', action='store_true', help='enable viewer.')
    args = parser.parse_args()

    connect(use_gui=True)

    with LockRenderer():
        draw_pose(unit_pose(), length=1, width=1)
        floor = create_floor()
        set_point(floor, Point(z=-EPSILON))

        table1 = create_table(width=TABLE_WIDTH, length=TABLE_WIDTH/2, height=TABLE_WIDTH/2,
                              top_color=TAN, cylinder=False)
        set_point(table1, Point(y=+0.5))

        table2 = create_table(width=TABLE_WIDTH, length=TABLE_WIDTH/2, height=TABLE_WIDTH/2,
                              top_color=TAN, cylinder=False)
        set_point(table2, Point(y=-0.5))

        tables = [table1, table2]

        #set_euler(table1, Euler(yaw=np.pi/2))
        with HideOutput():
            # data_path = add_data_path()
            # robot_path = os.path.join(data_path, WSG_GRIPPER)
            robot_path = get_model_path(WSG_50_URDF)  # WSG_50_URDF | PANDA_HAND_URDF
            robot = load_pybullet(robot_path, fixed_base=True)
            #dump_body(robot)

        block1 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=RED)
        block_z = stable_z(block1, table1)
        set_point(block1, Point(y=-0.5, z=block_z))

        block2 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=GREEN)
        set_point(block2, Point(x=-0.25, y=-0.5, z=block_z))

        block3 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=BLUE)
        set_point(block3, Point(x=-0.15, y=+0.5, z=block_z))

        blocks = [block1, block2, block3]

        set_camera_pose(camera_point=Point(x=-1, z=block_z+1), target_point=Point(z=block_z))

    block_pose = get_pose(block1)
    open_gripper(robot)
    tool_link = link_from_name(robot, 'tool_link')
    base_from_tool = get_relative_pose(robot, tool_link)
    #draw_pose(unit_pose(), parent=robot, parent_link=tool_link)
    grasps = get_side_grasps(block1, tool_pose=Pose(euler=Euler(yaw=np.pi/2)),
                             top_offset=0.02, grasp_length=0.03, under=False)[1:2]
    for grasp in grasps:
        gripper_pose = multiply(block_pose, invert(grasp))
        set_pose(robot, multiply(gripper_pose, invert(base_from_tool)))
        wait_for_user()

    wait_for_user('Finish?')
    disconnect()
Ejemplo n.º 6
0
def main(display='execute'): # control | execute | step
    # One of the arm's gantry carriage is fixed when the other is moving.
    connect(use_gui=True)
    set_camera(yaw=-90, pitch=-40, distance=10, target_position=(0, 7.5, 0))
    draw_pose(unit_pose(), length=1.0)
    disable_real_time()

    with HideOutput():
        root_directory = os.path.dirname(os.path.abspath(__file__))
        robot = load_pybullet(os.path.join(root_directory, ETH_RFL_URDF), fixed_base=True)
    # floor = load_model('models/short_floor.urdf')
    block = load_model(BLOCK_URDF, fixed_base=False)
    #link = link_from_name(robot, 'gantry_base_link')
    #print(get_aabb(robot, link))

    block_x = -0.2
    #block_y = 1 if ARM == 'right' else 13.5
    #block_x = 10
    block_y = 5.

    # set_pose(floor, Pose(Point(x=floor_x, y=1, z=1.3)))
    # set_pose(block, Pose(Point(x=floor_x, y=0.6, z=stable_z(block, floor))))
    set_pose(block, Pose(Point(x=block_x, y=block_y, z=3.5)))
    # set_default_camera()
    dump_world()

    #print(get_camera())
    saved_world = WorldSaver()
    with LockRenderer():
        command = plan(robot, block, fixed=[], teleport=False) # fixed=[floor],
    if (command is None) or (display is None):
        print('Unable to find a plan! Quit?')
        wait_for_interrupt()
        disconnect()
        return

    saved_world.restore()
    update_state()
    print('{}?'.format(display))
    wait_for_interrupt()
    if display == 'control':
        enable_gravity()
        command.control(real_time=False, dt=0)
    elif display == 'execute':
        command.refine(num_steps=10).execute(time_step=0.002)
    elif display == 'step':
        command.step()
    else:
        raise ValueError(display)

    print('Quit?')
    wait_for_interrupt()
    disconnect()
Ejemplo n.º 7
0
def test_grasps(robot, block):
    for arm in ARMS:
        gripper_joints = get_gripper_joints(robot, arm)
        tool_link = link_from_name(robot, TOOL_LINK.format(arm))
        tool_pose = get_link_pose(robot, tool_link)
        #handles = draw_pose(tool_pose)
        #grasps = get_top_grasps(block, under=True, tool_pose=unit_pose())
        grasps = get_side_grasps(block, under=True, tool_pose=unit_pose())
        for i, grasp_pose in enumerate(grasps):
            block_pose = multiply(tool_pose, grasp_pose)
            set_pose(block, block_pose)
            close_until_collision(robot, gripper_joints, bodies=[block], open_conf=get_open_positions(robot, arm),
                                  closed_conf=get_closed_positions(robot, arm))
            handles = draw_pose(block_pose)
            wait_if_gui('Grasp {}'.format(i))
            remove_handles(handles)
Ejemplo n.º 8
0
Archivo: move.py Proyecto: lyltc1/LTAMP
def plan_water_motion(body,
                      joints,
                      end_conf,
                      attachment,
                      obstacles=None,
                      attachments=[],
                      self_collisions=True,
                      disabled_collisions=set(),
                      max_distance=MAX_DISTANCE,
                      weights=None,
                      resolutions=None,
                      reference_pose=unit_pose(),
                      custom_limits={},
                      **kwargs):
    assert len(joints) == len(end_conf)
    sample_fn = get_sample_fn(body, joints, custom_limits=custom_limits)
    distance_fn = get_distance_fn(body, joints, weights=weights)
    extend_fn = get_extend_fn(body, joints, resolutions=resolutions)
    collision_fn = get_collision_fn(body,
                                    joints,
                                    obstacles, {attachment} | set(attachments),
                                    self_collisions,
                                    disabled_collisions,
                                    max_distance=max_distance,
                                    custom_limits=custom_limits)

    def water_test(q):
        if attachment is None:
            return False
        set_joint_positions(body, joints, q)
        attachment.assign()
        attachment_pose = get_pose(attachment.child)
        pose = multiply(attachment_pose,
                        reference_pose)  # TODO: confirm not inverted
        roll, pitch, _ = euler_from_quat(quat_from_pose(pose))
        violation = (MAX_ROTATION < abs(roll)) or (MAX_ROTATION < abs(pitch))
        #if violation: # TODO: check whether different confs can be waypoints for each object
        #    print(q, violation)
        #    wait_for_user()
        return violation

    invalid_fn = lambda q, **kwargs: water_test(q) or collision_fn(q, **kwargs)
    start_conf = get_joint_positions(body, joints)
    if not check_initial_end(start_conf, end_conf, invalid_fn):
        return None
    return birrt(start_conf, end_conf, distance_fn, sample_fn, extend_fn,
                 invalid_fn, **kwargs)
Ejemplo n.º 9
0
def draw_names(world, **kwargs):
    # TODO: adjust the colors?
    handles = []
    if not DEBUG:
        return handles
    with ClientSaver(world.perception.client):
        for name, body in world.perception.sim_bodies.items():
            #add_body_name(body, **kwargs)
            with PoseSaver(body):
                set_pose(body, unit_pose())
                lower, upper = get_aabb(
                    body
                )  # TODO: multi-link bodies doesn't seem to update when moved
                handles.append(
                    add_text(name, position=upper, parent=body,
                             **kwargs))  # parent_link=0,
            #handles.append(draw_pose(get_pose(body)))
        #handles.extend(draw_base_limits(get_base_limits(world.pr2), color=(1, 0, 0)))
        #handles.extend(draw_circle(get_point(world.pr2), MAX_VIS_DISTANCE, color=(0, 0, 1)))
        #handles.extend(draw_circle(get_point(world.pr2), MAX_REG_DISTANCE, color=(0, 0, 1)))
        #from plan_tools.debug import test_voxels
        #test_voxels(world)
    return handles
Ejemplo n.º 10
0
def get_reference_pose(name):  # TODO: bluecup_rotated
    for model, quat in STABLE_QUATS.items():
        if is_obj_type(name, model):
            return (unit_point(), quat)
    return unit_pose()
Ejemplo n.º 11
0
 def get_world_from_reference(self):
     if self.reference_body is None:
         return unit_pose()
     self.assign()
     return get_link_pose(self.reference_body, self.reference_link)
Ejemplo n.º 12
0
def set_tool_pose(world, tool_pose):
    #root_from_urdf = multiply(invert(get_pose(world.gripper, BASE_LINK)), # Previously 0?
    #                          get_pose(world.gripper))
    root_from_urdf = unit_pose()
    tool_from_root = get_tool_from_root(world.robot)
    set_pose(world.gripper, multiply(tool_pose, tool_from_root, root_from_urdf))
Ejemplo n.º 13
0
MODELS_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), os.pardir, 'models/')

VISUAL = True
if VISUAL:
    FRANKA_CARTER_PATH = os.path.join(MODELS_PATH, 'panda_arm_hand_on_carter_visual.urdf')
else:
    FRANKA_CARTER_PATH = os.path.join(MODELS_PATH, 'panda_arm_hand_on_carter_collision.urdf')

DEBUG = True

BASE_JOINTS = ['x', 'y', 'theta']
WHEEL_JOINTS = ['left_wheel', 'right_wheel']

FRANKA_CARTER = 'franka_carter'
FRANKA_TOOL_LINK = 'right_gripper'  # right_gripper | panda_wrist_end_pt | panda_forearm_end_pt
TOOL_POSE = unit_pose()

# +z: pointing, +y: left finger
FINGER_EXTENT = np.array([0.02, 0.01, 0.02]) # 2cm x 1cm x 2cm
FRANKA_GRIPPER_LINK = 'panda_link7' # panda_link7 | panda_link8 | panda_hand

################################################################################

TOP_GRASP = 'top'
SIDE_GRASP = 'side' # TODO: allow normal side grasps for cabinets?
UNDER_GRASP = 'under' # TODO: for franka_carter
GRASP_TYPES = [
    TOP_GRASP,
    SIDE_GRASP,
]
APPROACH_DISTANCE = 0.075 # 0.075 | 0.1
Ejemplo n.º 14
0
def main():
    parser = argparse.ArgumentParser()  # Automatically includes help
    parser.add_argument('-viewer', action='store_true', help='enable viewer.')
    args = parser.parse_args()

    connect(use_gui=True)
    #ycb_path = os.path.join(DRAKE_PATH, DRAKE_YCB)
    #ycb_path = os.path.join(YCB_PATH, YCB_TEMPLATE.format('003_cracker_box'))
    #print(ycb_path)
    #load_pybullet(ycb_path)

    with LockRenderer():
        draw_pose(unit_pose(), length=1, width=1)
        floor = create_floor()
        set_point(floor, Point(z=-EPSILON))
        table = create_table(width=TABLE_WIDTH,
                             length=TABLE_WIDTH / 2,
                             height=TABLE_WIDTH / 2,
                             top_color=TAN,
                             cylinder=False)
        #set_euler(table, Euler(yaw=np.pi/2))
        with HideOutput(False):
            # data_path = add_data_path()
            # robot_path = os.path.join(data_path, WSG_GRIPPER)
            robot_path = get_model_path(
                WSG_50_URDF)  # WSG_50_URDF | PANDA_HAND_URDF
            #robot_path = get_file_path(__file__, 'mit_arch_suction_gripper/mit_arch_suction_gripper.urdf')
            robot = load_pybullet(robot_path, fixed_base=True)
            #dump_body(robot)
            #robot = create_cylinder(radius=0.5*BLOCK_SIDE, height=4*BLOCK_SIDE) # vacuum gripper

        block1 = create_box(w=BLOCK_SIDE,
                            l=BLOCK_SIDE,
                            h=BLOCK_SIDE,
                            color=RED)
        block_z = stable_z(block1, table)
        set_point(block1, Point(z=block_z))

        block2 = create_box(w=BLOCK_SIDE,
                            l=BLOCK_SIDE,
                            h=BLOCK_SIDE,
                            color=GREEN)
        set_point(block2, Point(x=+0.25, z=block_z))

        block3 = create_box(w=BLOCK_SIDE,
                            l=BLOCK_SIDE,
                            h=BLOCK_SIDE,
                            color=BLUE)
        set_point(block3, Point(x=-0.15, z=block_z))

        blocks = [block1, block2, block3]

        add_line(Point(x=-TABLE_WIDTH / 2,
                       z=block_z - BLOCK_SIDE / 2 + EPSILON),
                 Point(x=+TABLE_WIDTH / 2,
                       z=block_z - BLOCK_SIDE / 2 + EPSILON),
                 color=RED)
        set_camera_pose(camera_point=Point(y=-1, z=block_z + 1),
                        target_point=Point(z=block_z))

    wait_for_user()
    block_pose = get_pose(block1)
    open_gripper(robot)
    tool_link = link_from_name(robot, 'tool_link')
    base_from_tool = get_relative_pose(robot, tool_link)
    #draw_pose(unit_pose(), parent=robot, parent_link=tool_link)

    y_grasp, x_grasp = get_top_grasps(block1,
                                      tool_pose=unit_pose(),
                                      grasp_length=0.03,
                                      under=False)
    grasp = y_grasp  # fingers won't collide
    gripper_pose = multiply(block_pose, invert(grasp))
    set_pose(robot, multiply(gripper_pose, invert(base_from_tool)))
    wait_for_user('Finish?')
    disconnect()
Ejemplo n.º 15
0
def plan_extrusion(args_list,
                   viewer=False,
                   verify=False,
                   verbose=False,
                   watch=False):
    results = []
    if not args_list:
        return results
    # TODO: setCollisionFilterGroupMask
    if not verbose:
        sys.stdout = open(os.devnull, 'w')

    problems = {args.problem for args in args_list}
    assert len(problems) == 1
    [problem] = problems

    # TODO: change dir for pddlstream
    extrusion_path = get_extrusion_path(problem)
    if False:
        extrusion_path = transform_json(problem)
    element_from_id, node_points, ground_nodes = load_extrusion(extrusion_path,
                                                                verbose=True)
    elements = sorted(element_from_id.values())
    #node_points = transform_model(problem, elements, node_points, ground_nodes)

    connect(use_gui=viewer, shadows=SHADOWS, color=BACKGROUND_COLOR)
    with LockRenderer(lock=True):
        draw_pose(unit_pose(), length=1.)
        json_data = read_json(extrusion_path)
        draw_pose(parse_origin_pose(json_data))
        draw_model(elements, node_points, ground_nodes)

        obstacles, robot = load_world()
        color = apply_alpha(BLACK, alpha=0)  # 0, 1
        #color = None
        element_bodies = dict(
            zip(elements,
                create_elements_bodies(node_points, elements, color=color)))
        set_extrusion_camera(node_points)
        #if viewer:
        #    label_nodes(node_points)
        saver = WorldSaver()
    wait_if_gui()

    #visualize_stiffness(extrusion_path)
    #debug_elements(robot, node_points, node_order, elements)
    initial_position = point_from_pose(
        get_link_pose(robot, link_from_name(robot, TOOL_LINK)))

    checker = None
    plan = None
    for args in args_list:
        if args.stiffness and (checker is None):
            checker = create_stiffness_checker(extrusion_path, verbose=False)

        saver.restore()
        #initial_conf = get_joint_positions(robot, get_movable_joints(robot))
        with LockRenderer(lock=not viewer):
            start_time = time.time()
            plan, data = None, {}
            with timeout(args.max_time):
                with Profiler(num=10, cumulative=False):
                    plan, data = solve_extrusion(robot,
                                                 obstacles,
                                                 element_from_id,
                                                 node_points,
                                                 element_bodies,
                                                 extrusion_path,
                                                 ground_nodes,
                                                 args,
                                                 checker=checker)
            runtime = elapsed_time(start_time)

        sequence = recover_directed_sequence(plan)
        if verify:
            max_translation, max_rotation = compute_plan_deformation(
                extrusion_path, recover_sequence(plan))
            valid = check_plan(extrusion_path, sequence)
            print('Valid:', valid)
            safe = validate_trajectories(element_bodies, obstacles, plan)
            print('Safe:', safe)
            data.update({
                'safe': safe,
                'valid': valid,
                'max_translation': max_translation,
                'max_rotation': max_rotation,
            })

        data.update({
            'runtime':
            runtime,
            'num_elements':
            len(elements),
            'ee_distance':
            compute_sequence_distance(node_points,
                                      sequence,
                                      start=initial_position,
                                      end=initial_position),
            'print_distance':
            get_print_distance(plan, teleport=True),
            'distance':
            get_print_distance(plan, teleport=False),
            'sequence':
            sequence,
            'parameters':
            get_global_parameters(),
            'problem':
            args.problem,
            'algorithm':
            args.algorithm,
            'heuristic':
            args.bias,
            'plan_extrusions':
            not args.disable,
            'use_collisions':
            not args.cfree,
            'use_stiffness':
            args.stiffness,
        })
        print(data)
        results.append((args, data))

        if True:
            data.update({
                'assembly': read_json(extrusion_path),
                'plan': extract_plan_data(plan),  # plan | trajectories
            })
            plan_file = '{}_solution.json'.format(args.problem)
            plan_path = os.path.join('solutions', plan_file)
            write_json(plan_path, data)

    reset_simulation()
    disconnect()
    if watch and (plan is not None):
        args = args_list[-1]
        animate = not (args.disable or args.ee_only)
        connect(use_gui=True, shadows=SHADOWS,
                color=BACKGROUND_COLOR)  # TODO: avoid reconnecting
        obstacles, robot = load_world()
        display_trajectories(
            node_points,
            ground_nodes,
            plan,  #time_step=None, video=True,
            animate=animate)
        reset_simulation()
        disconnect()

    if not verbose:
        sys.stdout.close()
    return results