Ejemplo n.º 1
0
class M5:
    in0 = Input(dim(types.i32, 16))
    in1 = Input(types.i32)
    t_c = dim(types.i32, 16)
    c = Output(t_c)

    @generator
    def build(ports):
        # a 32x32xi1 ndarray.
        # A dtype of i32 is fairly expensive wrt. the size of the output IR, but
        # but allows for assigning indiviudal bits.
        m = NDArray((32, 32), dtype=types.i1, name='m1')

        # Assign individual bits to the first 32 bits.
        for i in range(32):
            m[0, i] = hw.ConstantOp(types.i1, 1)

        # Fill the next 15 values with an i32. The ndarray knows how to convert
        # from i32 to <32xi1> to comply with the ndarray dtype.
        for i in range(1, 16):
            m[i] = ports.in1

        # Fill the upportmost 16 rows with the input array of in0 : 16xi32
        m[16:32] = ports.in0

        # We don't provide a method of reshaping the ndarray wrt. its dtype.
        # that is: 32x32xi1 => 32xi32
        # This has massive overhead in the generated IR, and can be easily
        # achieved by a bitcast.
        ports.c = hw.BitcastOp(M5.t_c, m.to_circt())
Ejemplo n.º 2
0
class M1:
    in1 = Input(dim(types.i32, 4, 8))
    out = Output(dim(types.i32, 2, 16))

    @generator
    def build(ports):
        ports.out = ports.in1.transpose((1, 0)).reshape((16, 2))
Ejemplo n.º 3
0
class M1:
    in1 = Input(dim(types.i32, 4, 8))
    out = Output(dim(types.i32, 8, 4))

    @generator
    def build(ports):
        ports.out = ports.in1.transpose((1, 0))
Ejemplo n.º 4
0
class M1:
    in1 = Input(dim(types.i32, 10))
    out = Output(dim(types.i32, 10))

    @generator
    def build(ports):
        ports.out = ports.in1.roll(3)
Ejemplo n.º 5
0
class M1:
    in1 = Input(dim(types.i32, 10))
    out = Output(dim(types.i32, 10))

    @generator
    def build(ports):
        m = NDArray(from_value=ports.in1, name='m1')
        ports.out = m.to_circt(create_wire=False)
Ejemplo n.º 6
0
class MyMod:
    in_port = Input(dim(8))
    out0 = Output(dim(5))
    out1 = Output(dim(5))

    @generator
    def construct(mod):
        # Partial lower slice
        mod.out0 = mod.in_port[3:]
        # partial upper slice
        mod.out1 = mod.in_port[:5]
Ejemplo n.º 7
0
class M1:
    in1 = Input(dim(types.i32, 10))
    in2 = Input(dim(types.i32, 10))
    in3 = Input(dim(types.i32, 10))
    out = Output(dim(types.i32, 30))

    @generator
    def build(ports):
        # Explicit ndarray.
        m = NDArray(from_value=ports.in1, name='m1')
        # Here we could do a sequence of transformations on 'm'...
        # Finally, concatenate [in2, m, in3]
        ports.out = ports.in2.concatenate((m, ports.in3))
Ejemplo n.º 8
0
class M2:
    in0 = Input(dim(types.i32, 16))
    in1 = Input(types.i32)
    t_c = dim(types.i32, 8, 4)
    c = Output(t_c)

    @generator
    def build(ports):
        # a 32xi32 ndarray.
        m = NDArray((32, ), dtype=types.i32, name='m2')
        for i in range(16):
            m[i] = ports.in1
        m[16:32] = ports.in0
        m = m.reshape((4, 8))
        ports.c = m.to_circt()
Ejemplo n.º 9
0
class M1:
    in1 = Input(dim(types.i32, 10))

    @generator
    def build(ports):
        # CHECK: ValueError: Must specify either shape and dtype, or initialize from a value, but not both.
        NDArray((10, 32), from_value=ports.in1, dtype=types.i1, name='m1')
Ejemplo n.º 10
0
class M1:
    out = Output(dim(types.i32, 3, 3))

    @generator
    def build(ports):
        m = NDArray((3, 3), dtype=types.i32)
        for i in range(3):
            for j in range(3):
                m[i][j] = types.i32(i * 3 + j)
        ports.out = m.to_circt()