Ejemplo n.º 1
0
def basic_different_dec_cardinality() -> MACID:
    """A basic MACIM where the cardinality of each agent's decision node
    is different. It has one subgame perfect NE.
    """
    macid = MACID(
        [("D1", "D2"), ("D1", "U1"), ("D1", "U2"), ("D2", "U2"), ("D2", "U1")],
        agent_decisions={
            0: ["D1"],
            1: ["D2"]
        },
        agent_utilities={
            0: ["U1"],
            1: ["U2"]
        },
    )

    cpd_d1 = DecisionDomain("D1", [0, 1])
    cpd_d2 = DecisionDomain("D2", [0, 1, 2])

    agent1_payoff = np.array([[3, 1, 0], [1, 2, 3]])
    agent2_payoff = np.array([[1, 2, 1], [1, 0, 3]])

    cpd_u1 = FunctionCPD("U1",
                         lambda d1, d2: agent1_payoff[d1, d2])  # type: ignore
    cpd_u2 = FunctionCPD("U2",
                         lambda d1, d2: agent2_payoff[d1, d2])  # type: ignore

    macid.add_cpds(cpd_d1, cpd_d2, cpd_u1, cpd_u2)

    return macid
Ejemplo n.º 2
0
def basic2agent_tie_break() -> MACID:
    macid = MACID(
        [("D1", "D2"), ("D1", "U1"), ("D1", "U2"), ("D2", "U2"), ("D2", "U1")],
        agent_decisions={
            0: ["D1"],
            1: ["D2"]
        },
        agent_utilities={
            0: ["U1"],
            1: ["U2"]
        },
    )

    cpd_d1 = DecisionDomain("D1", [0, 1])
    cpd_d2 = DecisionDomain("D2", [0, 1])
    cpd_u1 = TabularCPD(
        "U1",
        6,
        np.array([[0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 0, 0], [1, 0, 1, 0],
                  [0, 0, 0, 0], [0, 0, 0, 0]]),
        evidence=["D1", "D2"],
        evidence_card=[2, 2],
    )
    cpd_u2 = TabularCPD(
        "U2",
        6,
        np.array([[0, 0, 0, 0], [1, 0, 0, 0], [0, 0, 1, 1], [0, 0, 0, 0],
                  [0, 0, 0, 0], [0, 1, 0, 0]]),
        evidence=["D1", "D2"],
        evidence_card=[2, 2],
    )

    macid.add_cpds(cpd_d1, cpd_d2, cpd_u1, cpd_u2)

    return macid
Ejemplo n.º 3
0
    def test_get_reasoning_patterns(self) -> None:
        macid = MACID(
            [("D1", "U"), ("D2", "D1")],
            agent_decisions={1: ["D1", "D2"]},
            agent_utilities={1: ["U"]},
        )
        self.assertEqual(get_reasoning_patterns(macid)["dir_effect"], ["D1"])

        macid2 = MACID(
            [("D1", "U2"), ("D1", "D2"), ("D2", "U1"), ("D2", "U2")],
            agent_decisions={1: ["D1"], 2: ["D2"]},
            agent_utilities={1: ["U1"], 2: ["U2"]},
        )
        self.assertEqual(get_reasoning_patterns(macid2)["dir_effect"], ["D2"])
        self.assertEqual(get_reasoning_patterns(macid2)["manip"], ["D1"])

        macid3 = MACID(
            [("X", "U1"), ("X", "U2"), ("X", "D1"), ("D1", "D2"), ("D2", "U1"), ("D2", "U2")],
            agent_decisions={1: ["D1"], 2: ["D2"]},
            agent_utilities={1: ["U1"], 2: ["U2"]},
        )
        self.assertEqual(get_reasoning_patterns(macid3)["dir_effect"], ["D2"])
        self.assertEqual(get_reasoning_patterns(macid3)["sig"], ["D1"])

        macid4 = MACID(
            [("D1", "X2"), ("X1", "X2"), ("X2", "D2"), ("D2", "U1"), ("D2", "U2"), ("X1", "U2")],
            agent_decisions={1: ["D1"], 2: ["D2"]},
            agent_utilities={1: ["U1"], 2: ["U2"]},
        )
        self.assertEqual(get_reasoning_patterns(macid4)["dir_effect"], ["D2"])
        self.assertEqual(get_reasoning_patterns(macid4)["rev_den"], ["D1"])
Ejemplo n.º 4
0
def basic_different_dec_cardinality() -> MACID:
    """A basic MACIM where the cardinality of each agent's decision node
    is different. It has one subgame perfect NE.
    """
    macid = MACID(
        [("D1", "D2"), ("D1", "U1"), ("D1", "U2"), ("D2", "U2"), ("D2", "U1")],
        agent_decisions={
            0: ["D1"],
            1: ["D2"]
        },
        agent_utilities={
            0: ["U1"],
            1: ["U2"]
        },
    )

    agent1_payoff = np.array([[3, 1, 0], [1, 2, 3]])
    agent2_payoff = np.array([[1, 2, 1], [1, 0, 3]])

    macid.add_cpds(D1=[0, 1],
                   D2=[0, 1, 2],
                   U1=lambda d1, d2: agent1_payoff[d1, d2],
                   U2=lambda d1, d2: agent2_payoff[d1, d2])

    return macid
Ejemplo n.º 5
0
def two_agent_one_pne() -> MACID:
    """This macim is a simultaneous two player game
    and has a parameterisation that
    corresponds to the following normal
    form game - where the row player is agent 1, and the
    column player is agent 2
        +----------+----------+----------+
        |          | Act(0)   | Act(1)   |
        +----------+----------+----------+
        | Act(0)   | 1, 2     | 3, 0     |
        +----------+----------+----------+
        | Act(1)   | 0, 3     | 2, 2     |
        +----------+----------+----------+
    """
    macid = MACID(
        [("D1", "U1"), ("D1", "U2"), ("D2", "U2"), ("D2", "U1")],
        agent_decisions={
            1: ["D1"],
            2: ["D2"]
        },
        agent_utilities={
            1: ["U1"],
            2: ["U2"]
        },
    )

    agent1_payoff = np.array([[1, 3], [0, 2]])
    agent2_payoff = np.array([[2, 0], [3, 2]])

    macid.add_cpds(D1=[0, 1],
                   D2=[0, 1],
                   U1=lambda d1, d2: agent1_payoff[d1, d2],
                   U2=lambda d1, d2: agent2_payoff[d1, d2])
    return macid
Ejemplo n.º 6
0
def modified_taxi_competition() -> MACID:
    """Modifying the payoffs in the taxi competition example
    so that there is a tie break (if taxi 1 chooses to stop
    in front of the expensive hotel, taxi 2 is indifferent
    between their choices.)

    - There are now two SPNE

                              D1
        +----------+----------+----------+
        |  taxi 1  | expensive|  cheap   |
        +----------+----------+----------+
        |expensive |     2    |   3      |
    D2  +----------+----------+----------+
        | cheap    |     5    |   1      |
        +----------+----------+----------+

                              D1
        +----------+----------+----------+
        |  taxi 2  | expensive|  cheap   |
        +----------+----------+----------+
        |expensive |     2    |   5      |
    D2  +----------+----------+----------+
        | cheap    |     3    |   5      |
        +----------+----------+----------+

    """
    macid = MACID(
        [("D1", "D2"), ("D1", "U1"), ("D1", "U2"), ("D2", "U2"), ("D2", "U1")],
        agent_decisions={
            1: ["D1"],
            2: ["D2"]
        },
        agent_utilities={
            1: ["U1"],
            2: ["U2"]
        },
    )

    d1_domain = ["e", "c"]
    d2_domain = ["e", "c"]
    agent1_payoff = np.array([[2, 3], [5, 1]])
    agent2_payoff = np.array([[2, 5], [3, 5]])

    macid.add_cpds(
        DecisionDomain("D1", d1_domain),
        DecisionDomain("D2", d2_domain),
        FunctionCPD(
            "U1",
            lambda d1, d2: agent1_payoff[d2_domain.index(d2),
                                         d1_domain.index(d1)]),  # type: ignore
        FunctionCPD(
            "U2",
            lambda d1, d2: agent2_payoff[d2_domain.index(d2),
                                         d1_domain.index(d1)]),  # type: ignore
    )
    return macid
Ejemplo n.º 7
0
def taxi_competition() -> MACID:
    """MACIM representation of the Taxi Competition game.

    "Taxi Competition" is an example introduced in
    "Equilibrium Refinements for Multi-Agent Influence Diagrams: Theory and Practice"
    by Hammond, Fox, Everitt, Abate & Wooldridge, 2021:

                              D1
        +----------+----------+----------+
        |  taxi 1  | expensive|  cheap   |
        +----------+----------+----------+
        |expensive |     2    |   3      |
    D2  +----------+----------+----------+
        | cheap    |     5    |   1      |
        +----------+----------+----------+

                              D1
        +----------+----------+----------+
        |  taxi 2  | expensive|  cheap   |
        +----------+----------+----------+
        |expensive |     2    |   5      |
    D2  +----------+----------+----------+
        | cheap    |     3    |   1      |
        +----------+----------+----------+

    There are 3 pure startegy NE and 1 pure SPE.
    """
    macid = MACID(
        [("D1", "D2"), ("D1", "U1"), ("D1", "U2"), ("D2", "U2"), ("D2", "U1")],
        agent_decisions={
            1: ["D1"],
            2: ["D2"]
        },
        agent_utilities={
            1: ["U1"],
            2: ["U2"]
        },
    )

    d1_domain = ["e", "c"]
    d2_domain = ["e", "c"]
    agent1_payoff = np.array([[2, 3], [5, 1]])
    agent2_payoff = np.array([[2, 5], [3, 1]])

    macid.add_cpds(
        DecisionDomain("D1", d1_domain),
        DecisionDomain("D2", d2_domain),
        FunctionCPD(
            "U1",
            lambda d1, d2: agent1_payoff[d2_domain.index(d2),
                                         d1_domain.index(d1)]),  # type: ignore
        FunctionCPD(
            "U2",
            lambda d1, d2: agent2_payoff[d2_domain.index(d2),
                                         d1_domain.index(d1)]),  # type: ignore
    )
    return macid
Ejemplo n.º 8
0
def robot_warehouse() -> MACID:
    r"""
    Implementation of AAMAS robot warehouse example

    - Robot 1 collects packages, and can choose to
    hurry or not (D1)
    - Hurrying can be quicker (Q) but lead to
    breakages (B)
    - Robot 2 tidies up, and can choose to repair
    (R) breakages or not (D2)
    - Conducting repairs can obstruct (O) robot 1
    - Robot 1 rewarded for speed and lack of
    breakages (U1), robot 2 is rewarded for things
    being in a state of repair (U2)

    """
    macid = MACID(
        [
            ("D1", "Q"),
            ("D1", "B"),
            ("Q", "U1"),
            ("B", "U1"),
            ("B", "R"),
            ("B", "D2"),
            ("D2", "R"),
            ("D2", "O"),
            ("O", "U1"),
            ("R", "U2"),
        ],
        agent_decisions={
            1: ["D1"],
            2: ["D2"],
        },
        agent_utilities={
            1: ["U1"],
            2: ["U2"],
        },
    )

    macid.add_cpds(
        DecisionDomain("D1", domain=[0, 1]),
        DecisionDomain("D2", domain=[0, 1]),
        # Q copies the value of D1 with 90% probability
        StochasticFunctionCPD("Q", lambda d1: {d1: 0.9}, domain=[0, 1]),
        # B copies the value of D1 with 30% probability
        StochasticFunctionCPD("B", lambda d1: {d1: 0.3}, domain=[0, 1]),
        # R = not B or D2
        FunctionCPD("R", lambda b, d2: int(not b or d2)),
        # O copies the value of D2 with 60% probability
        StochasticFunctionCPD("O", lambda d2: {d2: 0.6}, domain=[0, 1]),
        # U1 = (Q and not O) - B
        FunctionCPD("U1", lambda q, b, o: int(q and not o) - int(b)),
        # U2 = R
        FunctionCPD("U2", lambda r: r),  # type: ignore
    )
    return macid
Ejemplo n.º 9
0
def robot_warehouse() -> MACID:
    r"""
    Implementation of AAMAS robot warehouse example

    - Robot 1 collects packages, and can choose to
    hurry or not (D1)
    - Hurrying can be quicker (Q) but lead to
    breakages (B)
    - Robot 2 tidies up, and can choose to repair
    (R) breakages or not (D2)
    - Conducting repairs can obstruct (O) robot 1
    - Robot 1 rewarded for speed and lack of
    breakages (U1), robot 2 is rewarded for things
    being in a state of repair (U2)

    """
    macid = MACID(
        [
            ("D1", "Q"),
            ("D1", "B"),
            ("Q", "U1"),
            ("B", "U1"),
            ("B", "R"),
            ("B", "D2"),
            ("D2", "R"),
            ("D2", "O"),
            ("O", "U1"),
            ("R", "U2"),
        ],
        agent_decisions={
            1: ["D1"],
            2: ["D2"],
        },
        agent_utilities={
            1: ["U1"],
            2: ["U2"],
        },
    )

    macid.add_cpds(
        D1=[0, 1],
        D2=[0, 1],
        Q=lambda d1: noisy_copy(d1, domain=[0, 1]),
        B=lambda d1: noisy_copy(d1, probability=0.3, domain=[0, 1]),
        R=lambda b, d2: int(not b or d2),
        O=lambda d2: noisy_copy(d2, probability=0.6, domain=[0, 1]),
        U1=lambda q, b, o: int(q and not o) - int(b),
        U2=lambda r: r,
    )
    return macid
Ejemplo n.º 10
0
def battle_of_the_sexes() -> MACID:
    """MACIM representation of the battle of the sexes game.

    The battle of the sexes game (also known as Bach or Stravinsky)
    is a simultaneous symmetric two-player game with payoffs
    corresponding to the following normal form game -
    the row player is Female and the column player is Male:

        +----------+----------+----------+
        |          |Opera     | Football |
        +----------+----------+----------+
        |  Opera   | 3, 2     |   0, 0   |
        +----------+----------+----------+
        | Football | 0, 0     | 2, 3     |
        +----------+----------+----------+

    This game has two pure NE: (Opera, Football) and (Football, Opera)
    """
    macid = MACID(
        [("D_F", "U_F"), ("D_F", "U_M"), ("D_M", "U_M"), ("D_M", "U_F")],
        agent_decisions={
            "M": ["D_F"],
            "F": ["D_M"]
        },
        agent_utilities={
            "M": ["U_F"],
            "F": ["U_M"]
        },
    )

    d_f_domain = ["O", "F"]
    d_m_domain = ["O", "F"]
    agent_f_payoff = np.array([[3, 0], [0, 2]])
    agent_m_payoff = np.array([[2, 0], [0, 3]])

    macid.add_cpds(
        DecisionDomain("D_F", d_f_domain),
        DecisionDomain("D_M", d_m_domain),
        FunctionCPD(
            "U_F",
            lambda d_f, d_m: agent_f_payoff[d_f_domain.index(
                d_f), d_m_domain.index(d_m)]  # type: ignore
        ),
        FunctionCPD(
            "U_M",
            lambda d_f, d_m: agent_m_payoff[d_f_domain.index(
                d_f), d_m_domain.index(d_m)]  # type: ignore
        ),
    )
    return macid
Ejemplo n.º 11
0
def signal() -> MACID:
    macid = MACID(
        [("X", "D1"), ("X", "U2"), ("X", "U1"), ("D1", "U2"), ("D1", "U1"),
         ("D1", "D2"), ("D2", "U1"), ("D2", "U2")],
        agent_decisions={
            0: ["D1"],
            1: ["D2"]
        },
        agent_utilities={
            0: ["U1"],
            1: ["U2"]
        },
    )
    cpd_x = TabularCPD("X", 2, np.array([[0.5], [0.5]]))
    cpd_d1 = DecisionDomain("D1", [0, 1])
    cpd_d2 = DecisionDomain("D1", [0, 1])

    u1_cpd_array = np.array([
        [0, 0, 0, 0, 1, 0, 0, 0],
        [0, 0, 0, 1, 0, 0, 1, 0],
        [0, 1, 0, 0, 0, 0, 0, 0],
        [0, 0, 1, 0, 0, 1, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 1],
        [1, 0, 0, 0, 0, 0, 0, 0],
    ])

    u2_cpd_array = np.array([
        [0, 0, 0, 0, 1, 0, 0, 0],
        [0, 0, 0, 1, 0, 0, 1, 0],
        [0, 1, 0, 0, 0, 0, 0, 0],
        [0, 0, 1, 0, 0, 1, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 1],
        [1, 0, 0, 0, 0, 0, 0, 0],
    ])

    cpd_u1 = TabularCPD("U1",
                        6,
                        u1_cpd_array,
                        evidence=["X", "D1", "D2"],
                        evidence_card=[2, 2, 2])
    cpd_u2 = TabularCPD("U2",
                        6,
                        u2_cpd_array,
                        evidence=["X", "D1", "D2"],
                        evidence_card=[2, 2, 2])

    macid.add_cpds(cpd_x, cpd_d1, cpd_d2, cpd_u1, cpd_u2)

    return macid
Ejemplo n.º 12
0
def two_agent_two_pne() -> MACID:
    """This macim is a simultaneous two player game
    and has a parameterisation that
    corresponds to the following normal
    form game - where the row player is agent 0, and the
    column player is agent 1
        +----------+----------+----------+
        |          | Act(0)   | Act(1)   |
        +----------+----------+----------+
        | Act(0)   | 1, 1     | 4, 2     |
        +----------+----------+----------+
        | Act(1)   | 2, 4     | 3, 3     |
        +----------+----------+----------+
    """
    macid = MACID(
        [("D1", "U1"), ("D1", "U2"), ("D2", "U2"), ("D2", "U1")],
        agent_decisions={
            0: ["D1"],
            1: ["D2"]
        },
        agent_utilities={
            0: ["U1"],
            1: ["U2"]
        },
    )

    cpd_d1 = DecisionDomain("D1", [0, 1])
    cpd_d2 = DecisionDomain("D2", [0, 1])

    cpd_u1 = TabularCPD(
        "U1",
        5,
        np.array([[0, 0, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1],
                  [0, 1, 0, 0]]),
        evidence=["D1", "D2"],
        evidence_card=[2, 2],
    )
    cpd_u2 = TabularCPD(
        "U2",
        5,
        np.array([[0, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1],
                  [0, 0, 1, 0]]),
        evidence=["D1", "D2"],
        evidence_card=[2, 2],
    )

    macid.add_cpds(cpd_d1, cpd_d2, cpd_u1, cpd_u2)
    return macid
Ejemplo n.º 13
0
def matching_pennies() -> MACID:
    """MACIM representation of the matching pennies game.

    The matching pennies game is a symmetric two-player game
    with payoffs corresponding to the following normal form game -
    the row player is agent 1 and the column player is agent 2:

        +----------+----------+----------+
        |          |Heads     | Tails    |
        +----------+----------+----------+
        |  Heads   | +1, -1   | -1, +1   |
        +----------+----------+----------+
        |  Tails   | -1, +1   | +1, -1   |
        +----------+----------+----------+

    This game has no pure NE, but has a mixed NE where
    each player chooses Heads or Tails with equal probability.
    """
    macid = MACID(
        [("D1", "U1"), ("D1", "U2"), ("D2", "U2"), ("D2", "U1")],
        agent_decisions={
            1: ["D1"],
            2: ["D2"]
        },
        agent_utilities={
            1: ["U1"],
            2: ["U2"]
        },
    )

    d1_domain = ["H", "T"]
    d2_domain = ["H", "T"]
    agent1_payoff = np.array([[1, -1], [-1, 1]])
    agent2_payoff = np.array([[-1, 1], [1, -1]])

    macid.add_cpds(
        DecisionDomain("D1", d1_domain),
        DecisionDomain("D2", d2_domain),
        FunctionCPD(
            "U1",
            lambda d1, d2: agent1_payoff[d1_domain.index(d1),
                                         d2_domain.index(d2)]),  # type: ignore
        FunctionCPD(
            "U2",
            lambda d1, d2: agent2_payoff[d1_domain.index(d1),
                                         d2_domain.index(d2)]),  # type: ignore
    )
    return macid
Ejemplo n.º 14
0
def get_path_example() -> MACID:
    macid = MACID(
        [("X1", "X3"), ("X1", "D"), ("X2", "D"), ("X2", "U"), ("D", "U")],
        agent_decisions={1: ["D"]},
        agent_utilities={1: ["U"]},
    )
    return macid
Ejemplo n.º 15
0
def macid_undir_paths2() -> MACID:
    return MACID(
        [("A", "B"), ("B", "C"), ("C", "D"), ("D", "E"), ("B", "F"),
         ("F", "E")],
        agent_decisions={1: ["D"]},
        agent_utilities={1: ["E"]},
    )
Ejemplo n.º 16
0
def tree_doctor() -> MACID:
    macid = MACID(
        [
            ("PT", "E"),
            ("PT", "TS"),
            ("PT", "BP"),
            ("TS", "TDoc"),
            ("TS", "TDead"),
            ("TDead", "V"),
            ("TDead", "Tree"),
            ("TDoc", "TDead"),
            ("TDoc", "Cost"),
            ("TDoc", "BP"),
            ("BP", "V"),
        ],
        agent_decisions={
            0: ["PT", "BP"],
            1: ["TDoc"]
        },
        agent_utilities={
            0: ["E", "V"],
            1: ["Tree", "Cost"]
        },
    )

    return macid
Ejemplo n.º 17
0
def get_basic_subgames3() -> MACID:
    macid = MACID(
        [
            ("D4", "U4"),
            ("D2", "U4"),
            ("D3", "U4"),
            ("D2", "U2"),
            ("D3", "U3"),
            ("D1", "U2"),
            ("D1", "U3"),
            ("D1", "U1"),
        ],
        agent_decisions={
            1: ["D1"],
            2: ["D2"],
            3: ["D3"],
            4: ["D4"],
        },
        agent_utilities={
            1: ["U1"],
            2: ["U2"],
            3: ["U3"],
            4: ["U4"],
        },
    )

    return macid
Ejemplo n.º 18
0
def get_basic_subgames() -> MACID:
    macid = MACID(
        [
            ("D11", "U11"),
            ("D11", "U2"),
            ("D11", "D12"),
            ("X1", "U11"),
            ("X1", "D11"),
            ("X1", "D2"),
            ("X1", "U3"),
            ("D2", "U2"),
            ("D2", "U3"),
            ("D2", "D3"),
            ("D3", "U2"),
            ("D3", "U3"),
            ("D12", "U3"),
            ("D12", "U22"),
            ("X2", "U22"),
            ("X2", "D12"),
        ],
        agent_decisions={
            0: ["D11", "D12"],
            1: ["D2"],
            2: ["D3"],
        },
        agent_utilities={
            0: ["U11"],
            1: ["U2", "U22"],
            2: ["U3"],
        },
    )

    return macid
Ejemplo n.º 19
0
def prisoners_dilemma() -> MACID:
    """MACIM representation of the canonical prisoner's dilemma.

    The prisoner's dilemma is a simultaneous symmetric two-player game
    with payoffs corresponding to the following normal form game -
    the row player is agent 1 and the column player is agent 2:

        +----------+----------+----------+
        |          |Cooperate | Defect   |
        +----------+----------+----------+
        |Cooperate | -1, -1   | -3, 0    |
        +----------+----------+----------+
        |  Defect  | 0, -3    | -2, -2   |
        +----------+----------+----------+

    This game has one pure NE: (defect, defect)
    """
    macid = MACID(
        [("D1", "U1"), ("D1", "U2"), ("D2", "U2"), ("D2", "U1")],
        agent_decisions={
            1: ["D1"],
            2: ["D2"]
        },
        agent_utilities={
            1: ["U1"],
            2: ["U2"]
        },
    )

    d1_domain = ["c", "d"]
    d2_domain = ["c", "d"]
    agent1_payoff = np.array([[-1, -3], [0, -2]])
    agent2_payoff = np.transpose(agent1_payoff)

    macid.add_cpds(
        DecisionDomain("D1", d1_domain),
        DecisionDomain("D2", d2_domain),
        FunctionCPD(
            "U1",
            lambda d1, d2: agent1_payoff[d1_domain.index(d1),
                                         d2_domain.index(d2)]),  # type: ignore
        FunctionCPD(
            "U2",
            lambda d1, d2: agent2_payoff[d1_domain.index(d1),
                                         d2_domain.index(d2)]),  # type: ignore
    )
    return macid
Ejemplo n.º 20
0
def two_agents_three_actions() -> MACID:
    """This macim is a representation of a
    game where two players must decide between
    threee different actions simultaneously
    - the row player is agent 1 and the
    column player is agent 2 - the normal form
    representation of the payoffs is as follows:
        +----------+----------+----------+----------+
        |          |  L       |     C    |     R    |
        +----------+----------+----------+----------+
        | T        | 4, 3     | 5, 1     | 6, 2     |
        +----------+----------+----------+----------+
        | M        | 2, 1     | 8, 4     |  3, 6    |
        +----------+----------+----------+----------+
        | B        | 3, 0     | 9, 6     |  2, 8    |
        +----------+----------+----------+----------+
    - The game has one pure NE (T,L)
    """
    macid = MACID(
        [("D1", "U1"), ("D1", "U2"), ("D2", "U2"), ("D2", "U1")],
        agent_decisions={
            1: ["D1"],
            2: ["D2"]
        },
        agent_utilities={
            1: ["U1"],
            2: ["U2"]
        },
    )

    d1_domain = ["T", "M", "B"]
    d2_domain = ["L", "C", "R"]
    cpd_d1 = DecisionDomain("D1", d1_domain)
    cpd_d2 = DecisionDomain("D2", d2_domain)

    agent1_payoff = np.array([[4, 5, 6], [2, 8, 3], [3, 9, 2]])
    agent2_payoff = np.array([[3, 1, 2], [1, 4, 6], [0, 6, 8]])

    cpd_u1 = FunctionCPD("U1", lambda d1, d2: agent1_payoff[d1_domain.index(
        d1), d2_domain.index(d2)])  # type: ignore
    cpd_u2 = FunctionCPD("U2", lambda d1, d2: agent2_payoff[d1_domain.index(
        d1), d2_domain.index(d2)])  # type: ignore

    macid.add_cpds(cpd_d1, cpd_d2, cpd_u1, cpd_u2)
    return macid
Ejemplo n.º 21
0
 def test_direct_effect(self) -> None:
     macid = MACID(
         [("D1", "U"), ("D2", "D1")],
         agent_decisions={1: ["D1", "D2"]},
         agent_utilities={1: ["U"]},
     )
     self.assertTrue(direct_effect(macid, "D1"))
     self.assertFalse(direct_effect(macid, "D2"))
     with self.assertRaises(KeyError):
         direct_effect(macid, "D3")
Ejemplo n.º 22
0
def umbrella() -> MACID:
    macid = MACID(
        [("W", "F"), ("W", "A"), ("F", "UM"), ("UM", "A")],
        agent_decisions={1: ["UM"]},
        agent_utilities={1: ["A"]},
    )

    cpd_w = TabularCPD("W", 2, np.array([[0.6], [0.4]]))
    cpd_f = TabularCPD("F",
                       2,
                       np.array([[0.8, 0.3], [0.2, 0.7]]),
                       evidence=["W"],
                       evidence_card=[2])
    cpd_a = TabularCPD("A",
                       3,
                       np.array([[0, 1, 1, 0], [1, 0, 0, 0], [0, 0, 0, 1]]),
                       evidence=["W", "UM"],
                       evidence_card=[2, 2])
    macid.add_cpds(cpd_w, cpd_f, cpd_a, UM=[0, 1])
    return macid
Ejemplo n.º 23
0
def two_agent_one_pne() -> MACID:
    """This macim is a simultaneous two player game
    and has a parameterisation that
    corresponds to the following normal
    form game - where the row player is agent 1, and the
    column player is agent 2
        +----------+----------+----------+
        |          | Act(0)   | Act(1)   |
        +----------+----------+----------+
        | Act(0)   | 1, 2     | 3, 0     |
        +----------+----------+----------+
        | Act(1)   | 0, 3     | 2, 2     |
        +----------+----------+----------+
    """
    macid = MACID(
        [("D1", "U1"), ("D1", "U2"), ("D2", "U2"), ("D2", "U1")],
        agent_decisions={
            1: ["D1"],
            2: ["D2"]
        },
        agent_utilities={
            1: ["U1"],
            2: ["U2"]
        },
    )

    cpd_d1 = DecisionDomain("D1", [0, 1])
    cpd_d2 = DecisionDomain("D2", [0, 1])

    agent1_payoff = np.array([[1, 3], [0, 2]])
    agent2_payoff = np.array([[2, 0], [3, 2]])

    cpd_u1 = FunctionCPD("U1",
                         lambda d1, d2: agent1_payoff[d1, d2])  # type: ignore
    cpd_u2 = FunctionCPD("U2",
                         lambda d1, d2: agent2_payoff[d1, d2])  # type: ignore

    macid.add_cpds(cpd_d1, cpd_d2, cpd_u1, cpd_u2)
    return macid
Ejemplo n.º 24
0
def sequential() -> MACID:
    macid = MACID(
        [("D1", "U1"), ("D1", "U2"), ("D1", "D2"), ("D2", "U1"), ("D2", "U2")],
        agent_decisions={
            0: ["D1"],
            1: ["D2"]
        },
        agent_utilities={
            0: ["U1"],
            1: ["U2"]
        },
    )
    return macid
Ejemplo n.º 25
0
 def test_revealing_or_denying(self) -> None:
     macid = MACID(
         [("D1", "X2"), ("X1", "X2"), ("X2", "D2"), ("D2", "U1"), ("D2", "U2"), ("X1", "U2")],
         agent_decisions={1: ["D1"], 2: ["D2"]},
         agent_utilities={1: ["U1"], 2: ["U2"]},
     )
     effective_set = {"D2"}  # by direct effect
     self.assertTrue(revealing_or_denying(macid, "D1", effective_set))
     self.assertFalse(revealing_or_denying(macid, "D2", effective_set))
     with self.assertRaises(KeyError):
         revealing_or_denying(macid, "D3", effective_set)
     effective_set2 = {"A"}
     with self.assertRaises(KeyError):
         revealing_or_denying(macid, "D1", effective_set2)
Ejemplo n.º 26
0
def politician() -> MACID:
    macid = MACID(
        [("D1", "I"), ("T", "I"), ("T", "U2"), ("I", "D2"), ("R", "D2"),
         ("D2", "U1"), ("D2", "U2")],
        agent_decisions={
            1: ["D1"],
            2: ["D2"]
        },
        agent_utilities={
            1: ["U1"],
            2: ["U2"]
        },
    )
    return macid
Ejemplo n.º 27
0
def forgetful_movie_star() -> MACID:
    macid = MACID(
        [
            ("S", "D11"),
            ("S", "D12"),
            ("D2", "U2"),
            ("D2", "U11"),
            ("D11", "U2"),
            ("D11", "U11"),
            ("D11", "U12"),
            ("D12", "U12"),
        ],
        agent_decisions={
            1: ["D11", "D12"],
            2: ["D2"]
        },
        agent_utilities={
            1: ["U11", "U12"],
            2: ["U2"]
        },
    )
    return macid
Ejemplo n.º 28
0
def subgame_difference() -> MACID:
    macid = MACID(
        [
            ("N", "D1"),
            ("N", "U1_A"),
            ("N", "U2_A"),
            ("D1", "U1_A"),
            ("D1", "U2_A"),
            ("D1", "U1_B"),
            ("D1", "U2_B"),
            ("D1", "D2"),
            ("D2", "U1_B"),
            ("D2", "U2_B"),
        ],
        agent_decisions={
            1: ["D1"],
            2: ["D2"]
        },
        agent_utilities={
            1: ["U1_A", "U1_B"],
            2: ["U2_A", "U2_B"]
        },
    )
    return macid
Ejemplo n.º 29
0
def macid() -> MACID:
    return MACID(
        [("D1", "D2"), ("D1", "U1"), ("D1", "U2"), ("D2", "U2"), ("D2", "U1")],
        agent_decisions={
            0: {
                "D": ["D1"],
                "U": ["U1"]
            },
            1: {
                "D": ["D2"],
                "U": ["U2"]
            }
        },
        agent_utilities={
            0: {
                "D": ["D1"],
                "U": ["U1"]
            },
            1: {
                "D": ["D2"],
                "U": ["U2"]
            }
        },
    )
Ejemplo n.º 30
0
def triage() -> MACID:
    macid = MACID(
        [
            ("H1", "D1"),
            ("H1", "U1"),
            ("H2", "D2"),
            ("H2", "U2"),
            ("D1", "U1"),
            ("D1", "U2"),
            ("D1", "D3"),
            ("D1", "D4"),
            ("D1", "U3"),
            ("D1", "U4"),
            ("D2", "U1"),
            ("D2", "U2"),
            ("D2", "D4"),
            ("D2", "D3"),
            ("D2", "U3"),
            ("D2", "U4"),
            ("H3", "D3"),
            ("H3", "U3"),
            ("H4", "D4"),
            ("H4", "U4"),
            ("D3", "U3"),
            ("D3", "U4"),
            ("D3", "U1"),
            ("D3", "U2"),
            ("D4", "U3"),
            ("D4", "U4"),
            ("D4", "U1"),
            ("D4", "U2"),
            ("D3", "U5"),
            ("D3", "U6"),
            ("D4", "U5"),
            ("D4", "U6"),
            ("D1", "U5"),
            ("D1", "U6"),
            ("D2", "U5"),
            ("D2", "U6"),
            ("H5", "D5"),
            ("H5", "U5"),
            ("H6", "D6"),
            ("H6", "U6"),
            ("D1", "D5"),
            ("D1", "D6"),
            ("D2", "D5"),
            ("D2", "D6"),
            ("D3", "D5"),
            ("D3", "D6"),
            ("D4", "D5"),
            ("D4", "D6"),
            ("D5", "U3"),
            ("D5", "U4"),
            ("D5", "U1"),
            ("D5", "U2"),
            ("D5", "U5"),
            ("D5", "U6"),
            ("D6", "U3"),
            ("D6", "U4"),
            ("D6", "U1"),
            ("D6", "U2"),
            ("D6", "U5"),
            ("D6", "U6"),
        ],
        agent_decisions={
            1: ["D1"],
            2: ["D2"],
            3: ["D3"],
            4: ["D4"],
            5: ["D5"],
            6: ["D6"],
        },
        agent_utilities={
            1: ["U1"],
            2: ["U2"],
            3: ["U3"],
            4: ["U4"],
            5: ["U5"],
            6: ["U6"],
        },
    )

    return macid