Ejemplo n.º 1
0
def load_checkpoint(checkpoint_file, model, optimizer=None):
    """Loads the checkpoint from the given file."""
    err_str = "Checkpoint '{}' not found"
    assert os.path.exists(checkpoint_file), err_str.format(checkpoint_file)
    checkpoint = torch.load(checkpoint_file, map_location="cpu")
    unwrap_model(model).load_state_dict(checkpoint["model_state"])
    optimizer.load_state_dict(checkpoint["optimizer_state"]) if optimizer else ()
    return model
Ejemplo n.º 2
0
def load_checkpoint(checkpoint_file, model, optimizer=None):
    """Loads the checkpoint from the given file."""
    err_str = "Checkpoint '{}' not found"
    assert pathmgr.exists(checkpoint_file), err_str.format(checkpoint_file)
    with pathmgr.open(checkpoint_file, "rb") as f:
        checkpoint = torch.load(f, map_location="cpu")
    unwrap_model(model).load_state_dict(checkpoint["model_state"])
    optimizer.load_state_dict(checkpoint["optimizer_state"]) if optimizer else ()
    return checkpoint["epoch"]
Ejemplo n.º 3
0
def load_checkpoint(checkpoint_file, model, optimizer=None, replace=None):
    """Loads the checkpoint from the given file."""
    err_str = "Checkpoint '{}' not found"
    assert os.path.exists(checkpoint_file), err_str.format(checkpoint_file)
    checkpoint = torch.load(checkpoint_file, map_location="cpu")
    if replace is not None:
        checkpoint["model_state"] = OrderedDict([
            (k.replace('se', replace), v) if '.se.' in k else (k, v)
            for k, v in checkpoint["model_state"].items()
        ])
    unwrap_model(model).load_state_dict(checkpoint["model_state"])
    optimizer.load_state_dict(
        checkpoint["optimizer_state"]) if optimizer else ()
    return checkpoint["epoch"]
Ejemplo n.º 4
0
def save_ckpt(model, out=None):
    # save student weights
    checkpoint_file = 'model.pyth' if out is None else out
    checkpoint = {
        "epoch": 0,
        "model_state": unwrap_model(model).state_dict(),
    }
    torch.save(checkpoint, checkpoint_file)
    return checkpoint_file
Ejemplo n.º 5
0
def load_checkpoint(checkpoint_file, model, model_ema=None, optimizer=None):
    """
    Loads a checkpoint selectively based on the input options.

    Each checkpoint contains both the model and model_ema weights (except checkpoints
    created by old versions of the code). If both the model and model_weights are
    requested, both sets of weights are loaded. If only the model weights are requested
    (that is if model_ema=None), the *better* set of weights is selected to be loaded
    (according to the lesser of test_err and ema_err, also stored in the checkpoint).

    The code is backward compatible with checkpoints that do not store the ema weights.
    """
    err_str = "Checkpoint '{}' not found"
    assert pathmgr.exists(checkpoint_file), err_str.format(checkpoint_file)
    with pathmgr.open(checkpoint_file, "rb") as f:
        checkpoint = torch.load(f, map_location="cpu")
    # Get test_err and ema_err (with backward compatibility)
    test_err = checkpoint["test_err"] if "test_err" in checkpoint else 100
    ema_err = checkpoint["ema_err"] if "ema_err" in checkpoint else 100
    # Load model and optionally model_ema weights (with backward compatibility)
    ema_state = "ema_state" if "ema_state" in checkpoint else "model_state"
    if model_ema:
        unwrap_model(model).load_state_dict(checkpoint["model_state"])
        unwrap_model(model_ema).load_state_dict(checkpoint[ema_state])
    else:
        best_state = "model_state" if test_err <= ema_err else ema_state
        unwrap_model(model).load_state_dict(checkpoint[best_state])
    # Load optimizer if requested
    if optimizer:
        optimizer.load_state_dict(checkpoint["optimizer_state"])
    return checkpoint["epoch"], test_err, ema_err
Ejemplo n.º 6
0
def save_checkpoint(model, model_ema, optimizer, epoch, test_err, ema_err):
    """Saves a checkpoint and also the best weights so far in a best checkpoint."""
    # Save checkpoints only from the main process
    if not dist.is_main_proc():
        return
    # Ensure that the checkpoint dir exists
    pathmgr.mkdirs(get_checkpoint_dir())
    # Record the state
    checkpoint = {
        "epoch": epoch,
        "test_err": test_err,
        "ema_err": ema_err,
        "model_state": unwrap_model(model).state_dict(),
        "ema_state": unwrap_model(model_ema).state_dict(),
        "optimizer_state": optimizer.state_dict(),
        "cfg": cfg.dump(),
    }
    # Write the checkpoint
    checkpoint_file = get_checkpoint(epoch + 1)
    with pathmgr.open(checkpoint_file, "wb") as f:
        torch.save(checkpoint, f)
    # Store the best model and model_ema weights so far
    if not pathmgr.exists(get_checkpoint_best()):
        pathmgr.copy(checkpoint_file, get_checkpoint_best())
    else:
        with pathmgr.open(get_checkpoint_best(), "rb") as f:
            best = torch.load(f, map_location="cpu")
        # Select the best model weights and the best model_ema weights
        if test_err < best["test_err"] or ema_err < best["ema_err"]:
            if test_err < best["test_err"]:
                best["model_state"] = checkpoint["model_state"]
                best["test_err"] = test_err
            if ema_err < best["ema_err"]:
                best["ema_state"] = checkpoint["ema_state"]
                best["ema_err"] = ema_err
            with pathmgr.open(get_checkpoint_best(), "wb") as f:
                torch.save(best, f)
    return checkpoint_file
Ejemplo n.º 7
0
def save_checkpoint(model, optimizer, epoch):
    """Saves a checkpoint."""
    # Save checkpoints only from the master process
    if not dist.is_master_proc():
        return
    # Ensure that the checkpoint dir exists
    os.makedirs(get_checkpoint_dir(), exist_ok=True)
    # Record the state
    checkpoint = {
        "epoch": epoch,
        "model_state": unwrap_model(model).state_dict(),
        "optimizer_state": optimizer.state_dict(),
        "cfg": cfg.dump(),
    }
    # Write the checkpoint
    checkpoint_file = get_checkpoint(epoch + 1)
    torch.save(checkpoint, checkpoint_file)
    return checkpoint_file
Ejemplo n.º 8
0
def save_checkpoint(model, optimizer, epoch, best):
    """Saves a checkpoint."""
    # Save checkpoints only from the master process
    if not dist.is_master_proc():
        return
    # Ensure that the checkpoint dir exists
    pathmgr.mkdirs(get_checkpoint_dir())
    # Record the state
    checkpoint = {
        "epoch": epoch,
        "model_state": unwrap_model(model).state_dict(),
        "optimizer_state": optimizer.state_dict(),
        "cfg": cfg.dump(),
    }
    # Write the checkpoint
    checkpoint_file = get_checkpoint(epoch + 1)
    with pathmgr.open(checkpoint_file, "wb") as f:
        torch.save(checkpoint, f)
    # If best copy checkpoint to the best checkpoint
    if best:
        pathmgr.copy(checkpoint_file, get_checkpoint_best())
    return checkpoint_file