def test_vat_call_compute_ivat_ordered_dissimilarity_matrix_to_obtain_the_ordered_matrix( mock_compute_vat): # given iris = datasets.load_iris() iris_dataset = iris.data mock_compute_vat.return_value = np.ones((3, 3)) # when ivat(iris_dataset) # then mock_compute_vat.assert_called_once_with(iris_dataset)
def test_ivat_does_not_return_the_matrix_by_default(mock_compute_ivat): # given iris = datasets.load_iris() iris_dataset = iris.data mock_compute_ivat.return_value = np.ones((3, 3)) # when output_result = ivat(iris_dataset) # then assert output_result is None
from sklearn.datasets import make_blobs import matplotlib.pyplot as plt X, y = make_blobs(n_samples=4000, centers=12, n_features=5) eucEmbeddings = np.genfromtxt('facebooknode2vecEmbeddings.csv', delimiter=",") hypEmbeddings = np.genfromtxt('facebookPoincareEmbeddings.csv', delimiter=",") eucStat = pyc.hopkins(eucEmbeddings, 150) hypStat = pyc.hopkins(hypEmbeddings, 150) xStat = pyc.hopkins(X, 150) print("Hopkins Statistic for euclidean embeddings: ", eucStat) print("Hopkins Statistic for hyperbolic poincare embeddings: ", hypStat) print("Hopkins Statistic for fake points: ", xStat) pyc.ivat(X) print("hello there") '''eucScore =pyc.assess_tendency_by_metrics(eucEmbeddings) hypScore =pyc.assess_tendency_by_metrics(hypEmbeddings) xScore =pyc.assess_tendency_by_metrics(X) print('eucScore: ', eucScore) print('hypScore: ', hypScore) print('xScore: ', xScore)'''
def draw_ivat(X): ivat(X) pass