Ejemplo n.º 1
0
def get_tfr(fif_file, cfg, tfr, n_jobs=1):
    raw, events = pu.load_raw(fif_file)
    p = qc.parse_path(fif_file)
    fname = p.name
    outpath = p.dir

    export_dir = '%s/plot_%s' % (outpath, fname)
    qc.make_dirs(export_dir)

    # set channels of interest
    picks = pu.channel_names_to_index(raw, cfg.CHANNEL_PICKS)
    spchannels = pu.channel_names_to_index(raw, cfg.SP_CHANNELS)

    if max(picks) > len(raw.info['ch_names']):
        msg = 'ERROR: "picks" has a channel index %d while there are only %d channels.' %\
              (max(picks), len(raw.info['ch_names']))
        raise RuntimeError(msg)

    # Apply filters
    pu.preprocess(raw, spatial=cfg.SP_FILTER, spatial_ch=spchannels, spectral=cfg.TP_FILTER,
                  spectral_ch=picks, notch=cfg.NOTCH_FILTER, notch_ch=picks,
                  multiplier=cfg.MULTIPLIER, n_jobs=n_jobs)

    # MNE TFR functions do not support Raw instances yet, so convert to Epoch
    if cfg.EVENT_START is None:
        raw._data[0][0] = 1
        events = np.array([[0, 0, 1]])
        classes = None
    else:
        classes = {'START':cfg.EVENT_START}
    tmax = (raw._data.shape[1] - 1) / raw.info['sfreq']
    epochs_all = mne.Epochs(raw, events, classes, tmin=0, tmax=tmax,
                    picks=picks, baseline=None, preload=True)
    print('\n>> Processing %s' % fif_file)
    freqs = cfg.FREQ_RANGE  # define frequencies of interest
    n_cycles = freqs / 2.  # different number of cycle per frequency
    power = tfr(epochs_all, freqs=freqs, n_cycles=n_cycles, use_fft=False,
        return_itc=False, decim=1, n_jobs=n_jobs)

    if cfg.EXPORT_MATLAB is True:
        # export all channels to MATLAB
        mout = '%s/%s-%s.mat' % (export_dir, fname, cfg.SP_FILTER)
        scipy.io.savemat(mout, {'tfr':power.data, 'chs':power.ch_names, 'events':events,
            'sfreq':raw.info['sfreq'], 'freqs':cfg.FREQ_RANGE})

    if cfg.EXPORT_PNG is True:
        # Plot power of each channel
        for ch in np.arange(len(picks)):
            ch_name = raw.ch_names[picks[ch]]
            title = 'Channel %s' % (ch_name)
            # mode= None | 'logratio' | 'ratio' | 'zscore' | 'mean' | 'percent'
            fig = power.plot([ch], baseline=cfg.BS_TIMES, mode=cfg.BS_MODE, show=False,
                colorbar=True, title=title, vmin=cfg.VMIN, vmax=cfg.VMAX, dB=False)
            fout = '%s/%s-%s-%s.png' % (export_dir, fname, cfg.SP_FILTER, ch_name)
            fig.savefig(fout)
            print('Exported %s' % fout)

    print('Finished !')
Ejemplo n.º 2
0
def get_tfr(cfg, recursive=False, n_jobs=1):
    '''
    @params:
    tfr_type: 'multitaper' or 'morlet'
    recursive: if True, load raw files in sub-dirs recursively
    export_path: path to save plots
    n_jobs: number of cores to run in parallel
    '''

    cfg = check_cfg(cfg)
    tfr_type = cfg.TFR_TYPE
    export_path = cfg.EXPORT_PATH
    t_buffer = cfg.T_BUFFER
    if tfr_type == 'multitaper':
        tfr = mne.time_frequency.tfr_multitaper
    elif tfr_type == 'morlet':
        tfr = mne.time_frequency.tfr_morlet
    elif tfr_type == 'butter':
        butter_order = 4 # TODO: parameterize
        tfr = lfilter
    elif tfr_type == 'fir':
        raise NotImplementedError
    else:
        raise ValueError('Wrong TFR type %s' % tfr_type)
    n_jobs = cfg.N_JOBS
    if n_jobs is None:
        n_jobs = mp.cpu_count()

    if hasattr(cfg, 'DATA_DIRS'):
        if export_path is None:
            raise ValueError('For multiple directories, cfg.EXPORT_PATH cannot be None')
        else:
            outpath = export_path
        # custom event file
        if hasattr(cfg, 'EVENT_FILE') and cfg.EVENT_FILE is not None:
            events = mne.read_events(cfg.EVENT_FILE)
        file_prefix = 'grandavg'

        # load and merge files from all directories
        flist = []
        for ddir in cfg.DATA_DIRS:
            ddir = ddir.replace('\\', '/')
            if ddir[-1] != '/': ddir += '/'
            for f in qc.get_file_list(ddir, fullpath=True, recursive=recursive):
                if qc.parse_path(f).ext in ['fif', 'bdf', 'gdf']:
                    flist.append(f)
        raw, events = pu.load_multi(flist)
    else:
        print('Loading', cfg.DATA_FILE)
        raw, events = pu.load_raw(cfg.DATA_FILE)

        # custom events
        if hasattr(cfg, 'EVENT_FILE') and cfg.EVENT_FILE is not None:
            events = mne.read_events(cfg.EVENT_FILE)

        if export_path is None:
            [outpath, file_prefix, _] = qc.parse_path_list(cfg.DATA_FILE)
        else:
            outpath = export_path

    # re-referencing
    if cfg.REREFERENCE is not None:
        pu.rereference(raw, cfg.REREFERENCE[1], cfg.REREFERENCE[0])

    sfreq = raw.info['sfreq']

    # set channels of interest
    picks = pu.channel_names_to_index(raw, cfg.CHANNEL_PICKS)
    spchannels = pu.channel_names_to_index(raw, cfg.SP_CHANNELS)

    if max(picks) > len(raw.info['ch_names']):
        msg = 'ERROR: "picks" has a channel index %d while there are only %d channels.' %\
              (max(picks), len(raw.info['ch_names']))
        raise RuntimeError(msg)

    # Apply filters
    pu.preprocess(raw, spatial=cfg.SP_FILTER, spatial_ch=spchannels, spectral=cfg.TP_FILTER,
                  spectral_ch=picks, notch=cfg.NOTCH_FILTER, notch_ch=picks,
                  multiplier=cfg.MULTIPLIER, n_jobs=n_jobs)

    # Read epochs
    classes = {}
    for t in cfg.TRIGGERS:
        if t in set(events[:, -1]):
            if hasattr(cfg, 'tdef'):
                classes[cfg.tdef.by_value[t]] = t
            else:
                classes[str(t)] = t
    if len(classes) == 0:
        raise ValueError('No desired event was found from the data.')

    try:
        tmin = cfg.EPOCH[0]
        tmin_buffer = tmin - t_buffer
        raw_tmax = raw._data.shape[1] / sfreq - 0.1
        if cfg.EPOCH[1] is None:
            if cfg.POWER_AVERAGED:
                raise ValueError('EPOCH value cannot have None for grand averaged TFR')
            else:
                if len(cfg.TRIGGERS) > 1:
                    raise ValueError('If the end time of EPOCH is None, only a single event can be defined.')
                t_ref = events[np.where(events[:,2] == list(cfg.TRIGGERS)[0])[0][0], 0] / sfreq
                tmax = raw_tmax - t_ref - t_buffer
        else:
            tmax = cfg.EPOCH[1]
        tmax_buffer = tmax + t_buffer
        if tmax_buffer > raw_tmax:
            raise ValueError('Epoch length with buffer (%.3f) is larger than signal length (%.3f)' % (tmax_buffer, raw_tmax))

        #print('Epoch tmin = %.1f, tmax = %.1f, raw length = %.1f' % (tmin, tmax, raw_tmax))
        epochs_all = mne.Epochs(raw, events, classes, tmin=tmin_buffer, tmax=tmax_buffer,
                                proj=False, picks=picks, baseline=None, preload=True)
        if epochs_all.drop_log_stats() > 0:
            print('\n** Bad epochs found. Dropping into a Python shell.')
            print(epochs_all.drop_log)
            print('tmin = %.1f, tmax = %.1f, tmin_buffer = %.1f, tmax_buffer = %.1f, raw length = %.1f' % \
                (tmin, tmax, tmin_buffer, tmax_buffer, raw._data.shape[1] / sfreq))
            print('\nType exit to continue.\n')
            pdb.set_trace()
    except:
        print('\n*** (tfr_export) ERROR OCCURRED WHILE EPOCHING ***')
        traceback.print_exc()
        print('tmin = %.1f, tmax = %.1f, tmin_buffer = %.1f, tmax_buffer = %.1f, raw length = %.1f' % \
            (tmin, tmax, tmin_buffer, tmax_buffer, raw._data.shape[1] / sfreq))
        pdb.set_trace()

    power = {}
    for evname in classes:
        #export_dir = '%s/plot_%s' % (outpath, evname)
        export_dir = outpath
        qc.make_dirs(export_dir)
        print('\n>> Processing %s' % evname)
        freqs = cfg.FREQ_RANGE  # define frequencies of interest
        n_cycles = freqs / 2.  # different number of cycle per frequency
        if cfg.POWER_AVERAGED:
            # grand-average TFR
            epochs = epochs_all[evname][:]
            if len(epochs) == 0:
                print('No %s epochs. Skipping.' % evname)
                continue

            if tfr_type == 'butter':
                b, a = butter_bandpass(cfg.FREQ_RANGE[0], cfg.FREQ_RANGE[-1], sfreq, order=butter_order)
                tfr_filtered = lfilter(b, a, epochs, axis=2)
                tfr_hilbert = hilbert(tfr_filtered)
                tfr_power = abs(tfr_hilbert)
                tfr_data = np.mean(tfr_power, axis=0)
            elif tfr_type == 'fir':
                raise NotImplementedError
            else:
                power[evname] = tfr(epochs, freqs=freqs, n_cycles=n_cycles, use_fft=False,
                    return_itc=False, decim=1, n_jobs=n_jobs)
                power[evname] = power[evname].crop(tmin=tmin, tmax=tmax)
                tfr_data = power[evname].data

            if cfg.EXPORT_MATLAB is True:
                # export all channels to MATLAB
                mout = '%s/%s-%s-%s.mat' % (export_dir, file_prefix, cfg.SP_FILTER, evname)
                scipy.io.savemat(mout, {'tfr':tfr_data, 'chs':epochs.ch_names,
                    'events':events, 'sfreq':sfreq, 'epochs':cfg.EPOCH, 'freqs':cfg.FREQ_RANGE})
                print('Exported %s' % mout)
            if cfg.EXPORT_PNG is True:
                # Inspect power for each channel
                for ch in np.arange(len(picks)):
                    chname = raw.ch_names[picks[ch]]
                    title = 'Peri-event %s - Channel %s' % (evname, chname)

                    # mode= None | 'logratio' | 'ratio' | 'zscore' | 'mean' | 'percent'
                    fig = power[evname].plot([ch], baseline=cfg.BS_TIMES, mode=cfg.BS_MODE, show=False,
                        colorbar=True, title=title, vmin=cfg.VMIN, vmax=cfg.VMAX, dB=False)
                    fout = '%s/%s-%s-%s-%s.png' % (export_dir, file_prefix, cfg.SP_FILTER, evname, chname)
                    fig.savefig(fout)
                    fig.clf()
                    print('Exported to %s' % fout)
        else:
            # TFR per event
            for ep in range(len(epochs_all[evname])):
                epochs = epochs_all[evname][ep]
                if len(epochs) == 0:
                    print('No %s epochs. Skipping.' % evname)
                    continue
                power[evname] = tfr(epochs, freqs=freqs, n_cycles=n_cycles, use_fft=False,
                    return_itc=False, decim=1, n_jobs=n_jobs)
                power[evname] = power[evname].crop(tmin=tmin, tmax=tmax)
                if cfg.EXPORT_MATLAB is True:
                    # export all channels to MATLAB
                    mout = '%s/%s-%s-%s-ep%02d.mat' % (export_dir, file_prefix, cfg.SP_FILTER, evname, ep + 1)
                    scipy.io.savemat(mout, {'tfr':power[evname].data, 'chs':power[evname].ch_names,
                        'events':events, 'sfreq':sfreq, 'tmin':tmin, 'tmax':tmax, 'freqs':cfg.FREQ_RANGE})
                    print('Exported %s' % mout)
                if cfg.EXPORT_PNG is True:
                    # Inspect power for each channel
                    for ch in np.arange(len(picks)):
                        chname = raw.ch_names[picks[ch]]
                        title = 'Peri-event %s - Channel %s, Trial %d' % (evname, chname, ep + 1)
                        # mode= None | 'logratio' | 'ratio' | 'zscore' | 'mean' | 'percent'
                        fig = power[evname].plot([ch], baseline=cfg.BS_TIMES, mode=cfg.BS_MODE, show=False,
                            colorbar=True, title=title, vmin=cfg.VMIN, vmax=cfg.VMAX, dB=False)
                        fout = '%s/%s-%s-%s-%s-ep%02d.png' % (export_dir, file_prefix, cfg.SP_FILTER, evname, chname, ep + 1)
                        fig.savefig(fout)
                        fig.clf()
                        print('Exported %s' % fout)

    if hasattr(cfg, 'POWER_DIFF'):
        export_dir = '%s/diff' % outpath
        qc.make_dirs(export_dir)
        labels = classes.keys()
        df = power[labels[0]] - power[labels[1]]
        df.data = np.log(np.abs(df.data))
        # Inspect power diff for each channel
        for ch in np.arange(len(picks)):
            chname = raw.ch_names[picks[ch]]
            title = 'Peri-event %s-%s - Channel %s' % (labels[0], labels[1], chname)

            # mode= None | 'logratio' | 'ratio' | 'zscore' | 'mean' | 'percent'
            fig = df.plot([ch], baseline=cfg.BS_TIMES, mode=cfg.BS_MODE, show=False,
                          colorbar=True, title=title, vmin=3.0, vmax=-3.0, dB=False)
            fout = '%s/%s-%s-diff-%s-%s-%s.jpg' % (export_dir, file_prefix, cfg.SP_FILTER, labels[0], labels[1], chname)
            print('Exporting to %s' % fout)
            fig.savefig(fout)
            fig.clf()
    print('Finished !')