Ejemplo n.º 1
0
 def test_real_complex(self):
     # Fermion
     self.check_monomial(c_dag(1, "up"), 1, make_fermion(True, 1, "up"))
     self.check_monomial(c(2, "dn"), 1, make_fermion(False, 2, "dn"))
     self.check_monomial(n(1, "dn"), 1, make_fermion(True, 1, "dn"),
                         make_fermion(False, 1, "dn"))
     # Boson
     self.check_monomial(a_dag(0, "x"), 1, make_boson(True, 0, "x"))
     self.check_monomial(a(0, "y"), 1, make_boson(False, 0, "y"))
     # Spin 1/2
     self.check_monomial(S_p(0, "x"), 1,
                         make_spin(SpinComponent.PLUS, 0, "x"))
     self.check_monomial(S_m(0, "x"), 1,
                         make_spin(SpinComponent.MINUS, 0, "x"))
     self.check_monomial(S_z(0, "x"), 1, make_spin(SpinComponent.Z, 0, "x"))
     # Spin 1
     self.check_monomial(S_p(0, "x", spin=1), 1,
                         make_spin(1.0, SpinComponent.PLUS, 0, "x"))
     self.check_monomial(S_m(0, "x", spin=1), 1,
                         make_spin(1.0, SpinComponent.MINUS, 0, "x"))
     self.check_monomial(S_z(0, "x", spin=1), 1,
                         make_spin(1.0, SpinComponent.Z, 0, "x"))
     # Spin 3/2
     self.check_monomial(S_p(0, "x", spin=3 / 2), 1,
                         make_spin(3 / 2, SpinComponent.PLUS, 0, "x"))
     self.check_monomial(S_m(0, "x", spin=3 / 2), 1,
                         make_spin(3 / 2, SpinComponent.MINUS, 0, "x"))
     self.check_monomial(S_z(0, "x", spin=3 / 2), 1,
                         make_spin(3 / 2, SpinComponent.Z, 0, "x"))
Ejemplo n.º 2
0
    def test_kondo_int(self):
        J = np.array([1, 2, 3, 4], dtype=float)
        indices_up = [("up", 0), ("up", 1), ("up", 2), ("up", 3)]
        indices_dn = [("dn", 0), ("dn", 1), ("dn", 2), ("dn", 3)]
        indices_spin = [('a', 0), ('b', 1), ('c', 2), ('d', 3)]

        H1 = kondo_int(J)
        self.assertIsInstance(H1, ExpressionR)
        sp = [c_dag(i, "up") * c(i, "dn") for i in range(4)]
        sm = [c_dag(i, "dn") * c(i, "up") for i in range(4)]
        sz = [0.5 * (n(i, "up") - n(i, "dn")) for i in range(4)]

        ref1 = 1.0 * (0.5 * (sp[0] * S_m(0) + sm[0] * S_p(0)) + sz[0] * S_z(0))
        ref1 += 2.0 * (0.5 *
                       (sp[1] * S_m(1) + sm[1] * S_p(1)) + sz[1] * S_z(1))
        ref1 += 3.0 * (0.5 *
                       (sp[2] * S_m(2) + sm[2] * S_p(2)) + sz[2] * S_z(2))
        ref1 += 4.0 * (0.5 *
                       (sp[3] * S_m(3) + sm[3] * S_p(3)) + sz[3] * S_z(3))
        self.assertEqual(H1, ref1)

        H2 = kondo_int(1j * J)
        self.assertIsInstance(H2, ExpressionC)
        ref2 = 1j * ref1
        self.assertEqual(H2, ref2)

        H3 = kondo_int(J,
                       indices_up=indices_up,
                       indices_dn=indices_dn,
                       indices_spin=indices_spin)
        self.assertIsInstance(H3, ExpressionR)
        sp = [c_dag("up", i) * c("dn", i) for i in range(4)]
        sm = [c_dag("dn", i) * c("up", i) for i in range(4)]
        sz = [0.5 * (n("up", i) - n("dn", i)) for i in range(4)]

        ref3 = 1.0 * (0.5 * (sp[0] * S_m('a', 0) + sm[0] * S_p('a', 0)) +
                      sz[0] * S_z('a', 0))
        ref3 += 2.0 * (0.5 * (sp[1] * S_m('b', 1) + sm[1] * S_p('b', 1)) +
                       sz[1] * S_z('b', 1))
        ref3 += 3.0 * (0.5 * (sp[2] * S_m('c', 2) + sm[2] * S_p('c', 2)) +
                       sz[2] * S_z('c', 2))
        ref3 += 4.0 * (0.5 * (sp[3] * S_m('d', 3) + sm[3] * S_p('d', 3)) +
                       sz[3] * S_z('d', 3))
        self.assertEqual(H3, ref3)

        H4 = kondo_int(J, spin=1)
        self.assertIsInstance(H4, ExpressionR)
        sp = [c_dag(i, "up") * c(i, "dn") for i in range(4)]
        sm = [c_dag(i, "dn") * c(i, "up") for i in range(4)]
        sz = [0.5 * (n(i, "up") - n(i, "dn")) for i in range(4)]

        ref4 = 1.0 * (0.5 *
                      (sp[0] * S1_m(0) + sm[0] * S1_p(0)) + sz[0] * S1_z(0))
        ref4 += 2.0 * (0.5 *
                       (sp[1] * S1_m(1) + sm[1] * S1_p(1)) + sz[1] * S1_z(1))
        ref4 += 3.0 * (0.5 *
                       (sp[2] * S1_m(2) + sm[2] * S1_p(2)) + sz[2] * S1_z(2))
        ref4 += 4.0 * (0.5 *
                       (sp[3] * S1_m(3) + sm[3] * S1_p(3)) + sz[3] * S1_z(3))
        self.assertEqual(H4, ref4)
Ejemplo n.º 3
0
 def test_mixed_indices(self):
     expr = c_dag(0, "up") * c(1, "dn") \
         + a_dag("x") * n() + a("y") * n() + S_p() * S_m()
     self.assertEqual(
         str(expr),
         "0.5 + 1*Sz() + 1*C+(0,up)C(1,dn) + 1*C+()C()A+(x) + 1*C+()C()A(y)"
     )
Ejemplo n.º 4
0
 def test_spin12_products(self):
     self.assertEqual(S_z() * S_z(), ExpressionR(0.25))
     self.assertEqual(S_p() * S_p(), ExpressionR())
     self.assertEqual(S_m() * S_m(), ExpressionR())
     self.assertEqual(S_p() * S_z(), -0.5 * S_p())
     self.assertEqual(S_z() * S_m(), -0.5 * S_m())
     self.assertEqual(S_z() * S_p(), 0.5 * S_p())
     self.assertEqual(S_m() * S_z(), 0.5 * S_m())
     self.assertEqual(S_p() * S_m(), 0.5 + S_z())
     self.assertEqual(S_m() * S_p(), 0.5 - S_z())
Ejemplo n.º 5
0
 def test_complex_only(self):
     # Spin 1/2
     self.assertEqual(make_complex(S_p(0, "x")),
                      S_x(0, "x") + 1j * S_y(0, "x"))
     self.assertEqual(make_complex(S_m(0, "x")),
                      S_x(0, "x") - 1j * S_y(0, "x"))
     # Spin 1
     self.assertEqual(make_complex(S_p(0, "x", spin=1)),
                      S_x(0, "x", spin=1) + 1j * S_y(0, "x", spin=1))
     self.assertEqual(make_complex(S_m(0, "x", spin=1)),
                      S_x(0, "x", spin=1) - 1j * S_y(0, "x", spin=1))
     # Spin 3/2
     self.assertEqual(
         make_complex(S_p(0, "x", spin=3 / 2)),
         S_x(0, "x", spin=3 / 2) + 1j * S_y(0, "x", spin=3 / 2))
     self.assertEqual(
         make_complex(S_m(0, "x", spin=3 / 2)),
         S_x(0, "x", spin=3 / 2) - 1j * S_y(0, "x", spin=3 / 2))
Ejemplo n.º 6
0
    def test_from_expression(self):
        expr = 2.0 * S_p("i", 0, spin=3 / 2) * S_m("j", 0, spin=3 / 2) \
            + 5.0 * n("up", 0) * n("dn", 0)

        hs1 = HilbertSpace(expr)
        self.assertEqual(len(hs1), 4)
        self.assertEqual(hs1.total_n_bits, 6)
        self.assertEqual(hs1.dim, 64)
        self.assertTrue(self.es_f_dn in hs1)
        self.assertEqual(hs1.index(self.es_f_dn), 0)
        self.assertEqual(hs1.bit_range(self.es_f_dn), (0, 0))
        self.assertTrue(self.es_f_up in hs1)
        self.assertEqual(hs1.index(self.es_f_up), 1)
        self.assertEqual(hs1.bit_range(self.es_f_up), (1, 1))
        self.assertTrue(self.es_s32_i in hs1)
        self.assertEqual(hs1.index(self.es_s32_i), 2)
        self.assertEqual(hs1.bit_range(self.es_s32_i), (2, 3))
        self.assertTrue(self.es_s32_j in hs1)
        self.assertEqual(hs1.index(self.es_s32_j), 3)
        self.assertEqual(hs1.bit_range(self.es_s32_j), (4, 5))

        # foreach()
        count = 0

        def counter(i):
            nonlocal count
            count += i

        foreach(hs1, counter)
        self.assertEqual(count, 2016)

        expr += a_dag("x", 0) + a("y", 0)

        hs2 = HilbertSpace(expr, bits_per_boson=4)

        self.assertEqual(len(hs2), 6)
        self.assertEqual(hs2.total_n_bits, 14)
        self.assertEqual(hs2.dim, 16384)
        self.assertTrue(self.es_f_dn in hs2)
        self.assertEqual(hs2.index(self.es_f_dn), 0)
        self.assertEqual(hs2.bit_range(self.es_f_dn), (0, 0))
        self.assertTrue(self.es_f_up in hs2)
        self.assertEqual(hs2.index(self.es_f_up), 1)
        self.assertEqual(hs2.bit_range(self.es_f_up), (1, 1))
        self.assertTrue(self.es_b_x in hs2)
        self.assertEqual(hs2.index(self.es_b_x), 2)
        self.assertEqual(hs2.bit_range(self.es_b_x), (2, 5))
        self.assertTrue(self.es_b_y in hs2)
        self.assertEqual(hs2.index(self.es_b_y), 3)
        self.assertEqual(hs2.bit_range(self.es_b_y), (6, 9))
        self.assertTrue(self.es_s32_i in hs2)
        self.assertEqual(hs2.index(self.es_s32_i), 4)
        self.assertEqual(hs2.bit_range(self.es_s32_i), (10, 11))
        self.assertTrue(self.es_s32_j in hs2)
        self.assertEqual(hs2.index(self.es_s32_j), 5)
        self.assertEqual(hs2.bit_range(self.es_s32_j), (12, 13))
Ejemplo n.º 7
0
    def test_biquadratic_spin_int(self):
        J = np.array([[0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3], [0, 0, 0, 0]],
                     dtype=float)
        indices = [('a', 0), ('b', 1), ('c', 2), ('d', 3)]

        S0S1 = 0.5 * (S1_p(0) * S1_m(1) + S1_m(0) * S1_p(1)) \
            + S1_z(0) * S1_z(1)
        S1S2 = 0.5 * (S1_p(1) * S1_m(2) + S1_m(1) * S1_p(2)) \
            + S1_z(1) * S1_z(2)
        S2S3 = 0.5 * (S1_p(2) * S1_m(3) + S1_m(2) * S1_p(3)) \
            + S1_z(2) * S1_z(3)

        H1 = biquadratic_spin_int(J)
        self.assertIsInstance(H1, ExpressionR)
        ref1 = 1.0 * S0S1 * S0S1 + 2.0 * S1S2 * S1S2 + 3.0 * S2S3 * S2S3
        self.assertEqual(H1, ref1)

        H2 = biquadratic_spin_int(1j * J)
        self.assertIsInstance(H2, ExpressionC)
        ref2 = 1j * ref1
        self.assertEqual(H2, ref2)

        H3 = biquadratic_spin_int(J, indices=indices)
        self.assertIsInstance(H3, ExpressionR)

        S0S1 = 0.5 * (S1_p('a', 0) * S1_m('b', 1)
                      + S1_m('a', 0) * S1_p('b', 1)) \
            + S1_z('a', 0) * S1_z('b', 1)
        S1S2 = 0.5 * (S1_p('b', 1) * S1_m('c', 2)
                      + S1_m('b', 1) * S1_p('c', 2)) \
            + S1_z('b', 1) * S1_z('c', 2)
        S2S3 = 0.5 * (S1_p('c', 2) * S1_m('d', 3)
                      + S1_m('c', 2) * S1_p('d', 3)) \
            + S1_z('c', 2) * S1_z('d', 3)

        ref3 = 1.0 * S0S1 * S0S1 + 2.0 * S1S2 * S1S2 + 3.0 * S2S3 * S2S3
        self.assertEqual(H3, ref3)

        H4 = biquadratic_spin_int(J, indices=indices, spin=1 / 2)
        self.assertIsInstance(H4, ExpressionR)

        S0S1 = 0.5 * (S_p('a', 0) * S_m('b', 1) +
                      S_m('a', 0) * S_p('b', 1)) + S_z('a', 0) * S_z('b', 1)
        S1S2 = 0.5 * (S_p('b', 1) * S_m('c', 2) +
                      S_m('b', 1) * S_p('c', 2)) + S_z('b', 1) * S_z('c', 2)
        S2S3 = 0.5 * (S_p('c', 2) * S_m('d', 3) +
                      S_m('c', 2) * S_p('d', 3)) + S_z('c', 2) * S_z('d', 3)

        ref4 = 1.0 * S0S1 * S0S1 + 2.0 * S1S2 * S1S2 + 3.0 * S2S3 * S2S3
        self.assertEqual(H4, ref4)
Ejemplo n.º 8
0
    def test_jaynes_cummings(self):
        eps = np.array([1, 2, 3], dtype=float)
        omega = np.array([4, 5], dtype=float)
        g = np.array([[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]], dtype=float)
        indices_atom = [('a', 0), ('b', 1), ('c', 2)]
        indices_boson = [('x', 0), ('y', 1)]

        self.assertIsInstance(jaynes_cummings(eps, omega, g), ExpressionR)
        self.assertIsInstance(jaynes_cummings(1j * eps, omega, g), ExpressionC)
        self.assertIsInstance(jaynes_cummings(eps, 1j * omega, g), ExpressionC)
        self.assertIsInstance(jaynes_cummings(eps, omega, 1j * g), ExpressionC)

        H1 = jaynes_cummings(eps, omega, 1j * g)
        ref1 = S_z(0) + 2.0 * S_z(1) + 3.0 * S_z(2)
        ref1 += 4.0 * a_dag(0) * a(0) + 5.0 * a_dag(1) * a(1)
        ref1 += 0.1j * a_dag(0) * S_m(0) - 0.1j * a(0) * S_p(0)
        ref1 += 0.2j * a_dag(1) * S_m(0) - 0.2j * a(1) * S_p(0)
        ref1 += 0.3j * a_dag(0) * S_m(1) - 0.3j * a(0) * S_p(1)
        ref1 += 0.4j * a_dag(1) * S_m(1) - 0.4j * a(1) * S_p(1)
        ref1 += 0.5j * a_dag(0) * S_m(2) - 0.5j * a(0) * S_p(2)
        ref1 += 0.6j * a_dag(1) * S_m(2) - 0.6j * a(1) * S_p(2)
        self.assertEqual(H1, ref1)

        H2 = jaynes_cummings(eps,
                             omega,
                             1j * g,
                             indices_atom=indices_atom,
                             indices_boson=indices_boson)
        ref2 = S_z('a', 0) + 2.0 * S_z('b', 1) + 3.0 * S_z('c', 2)
        ref2 += 4.0 * a_dag('x', 0) * a('x', 0) \
            + 5.0 * a_dag('y', 1) * a('y', 1)
        ref2 += 0.1j * a_dag('x', 0) * S_m('a', 0) \
            - 0.1j * a('x', 0) * S_p('a', 0)
        ref2 += 0.2j * a_dag('y', 1) * S_m('a', 0) \
            - 0.2j * a('y', 1) * S_p('a', 0)
        ref2 += 0.3j * a_dag('x', 0) * S_m('b', 1) \
            - 0.3j * a('x', 0) * S_p('b', 1)
        ref2 += 0.4j * a_dag('y', 1) * S_m('b', 1) \
            - 0.4j * a('y', 1) * S_p('b', 1)
        ref2 += 0.5j * a_dag('x', 0) * S_m('c', 2) \
            - 0.5j * a('x', 0) * S_p('c', 2)
        ref2 += 0.6j * a_dag('y', 1) * S_m('c', 2) \
            - 0.6j * a('y', 1) * S_p('c', 2)
        self.assertEqual(H2, ref2)

        H3 = jaynes_cummings(eps, omega, 1j * g, spin=1)
        ref3 = S1_z(0) + 2.0 * S1_z(1) + 3.0 * S1_z(2)
        ref3 += 4.0 * a_dag(0) * a(0) + 5.0 * a_dag(1) * a(1)
        ref3 += 0.1j * a_dag(0) * S1_m(0) - 0.1j * a(0) * S1_p(0)
        ref3 += 0.2j * a_dag(1) * S1_m(0) - 0.2j * a(1) * S1_p(0)
        ref3 += 0.3j * a_dag(0) * S1_m(1) - 0.3j * a(0) * S1_p(1)
        ref3 += 0.4j * a_dag(1) * S1_m(1) - 0.4j * a(1) * S1_p(1)
        ref3 += 0.5j * a_dag(0) * S1_m(2) - 0.5j * a(0) * S1_p(2)
        ref3 += 0.6j * a_dag(1) * S1_m(2) - 0.6j * a(1) * S1_p(2)
        self.assertEqual(H3, ref3)
Ejemplo n.º 9
0
    def test_heisenberg(self):
        J = np.array([[0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3], [0, 0, 0, 0]],
                     dtype=float)
        h = np.array([[0.3, 0, 0], [0, 0.4, 0], [0, 0, 0.5], [0, 0, 0]])
        indices = [('a', 0), ('b', 1), ('c', 2), ('d', 3)]

        H1 = heisenberg(J)
        self.assertIsInstance(H1, ExpressionR)
        ref1 = - 0.5 * S_p(0) * S_m(1) \
               - 0.5 * S_m(0) * S_p(1) \
               - 1.0 * S_z(0) * S_z(1) \
               - 1.0 * S_p(1) * S_m(2) \
               - 1.0 * S_m(1) * S_p(2) \
               - 2.0 * S_z(1) * S_z(2) \
               - 1.5 * S_p(2) * S_m(3) \
               - 1.5 * S_m(2) * S_p(3) \
               - 3.0 * S_z(2) * S_z(3)
        self.assertEqual(H1, ref1)

        H2 = heisenberg(1j * J)
        self.assertIsInstance(H2, ExpressionC)
        ref2 = 1j * ref1
        self.assertEqual(H2, ref2)

        H3 = heisenberg(J, h)
        self.assertIsInstance(H3, ExpressionC)
        ref3 = ref1 - 0.3 * S_x(0) - 0.4 * S_y(1) - 0.5 * S_z(2)
        self.assertEqual(H3, ref3)

        H4 = heisenberg(J, h, indices=indices)
        self.assertIsInstance(H4, ExpressionC)
        ref4 = - 0.5 * S_p('a', 0) * S_m('b', 1) \
               - 0.5 * S_m('a', 0) * S_p('b', 1) \
               - 1.0 * S_z('a', 0) * S_z('b', 1) \
               - 1.0 * S_p('b', 1) * S_m('c', 2) \
               - 1.0 * S_m('b', 1) * S_p('c', 2) \
               - 2.0 * S_z('b', 1) * S_z('c', 2) \
               - 1.5 * S_p('c', 2) * S_m('d', 3) \
               - 1.5 * S_m('c', 2) * S_p('d', 3) \
               - 3.0 * S_z('c', 2) * S_z('d', 3) \
               - 0.3 * S_x('a', 0) - 0.4 * S_y('b', 1) - 0.5 * S_z('c', 2)
        self.assertEqual(H4, ref4)

        H5 = heisenberg(J, h, indices=indices, spin=1)
        self.assertIsInstance(H5, ExpressionC)
        ref5 = - 0.5 * S1_p('a', 0) * S1_m('b', 1) \
               - 0.5 * S1_m('a', 0) * S1_p('b', 1) \
               - 1.0 * S1_z('a', 0) * S1_z('b', 1) \
               - 1.0 * S1_p('b', 1) * S1_m('c', 2) \
               - 1.0 * S1_m('b', 1) * S1_p('c', 2) \
               - 2.0 * S1_z('b', 1) * S1_z('c', 2) \
               - 1.5 * S1_p('c', 2) * S1_m('d', 3) \
               - 1.5 * S1_m('c', 2) * S1_p('d', 3) \
               - 3.0 * S1_z('c', 2) * S1_z('d', 3) \
               - 0.3 * S1_x('a', 0) - 0.4 * S1_y('b', 1) - 0.5 * S1_z('c', 2)
        self.assertEqual(H5, ref5)