Ejemplo n.º 1
0
 def test_real_complex(self):
     # Fermion
     self.check_monomial(c_dag(1, "up"), 1, make_fermion(True, 1, "up"))
     self.check_monomial(c(2, "dn"), 1, make_fermion(False, 2, "dn"))
     self.check_monomial(n(1, "dn"), 1, make_fermion(True, 1, "dn"),
                         make_fermion(False, 1, "dn"))
     # Boson
     self.check_monomial(a_dag(0, "x"), 1, make_boson(True, 0, "x"))
     self.check_monomial(a(0, "y"), 1, make_boson(False, 0, "y"))
     # Spin 1/2
     self.check_monomial(S_p(0, "x"), 1,
                         make_spin(SpinComponent.PLUS, 0, "x"))
     self.check_monomial(S_m(0, "x"), 1,
                         make_spin(SpinComponent.MINUS, 0, "x"))
     self.check_monomial(S_z(0, "x"), 1, make_spin(SpinComponent.Z, 0, "x"))
     # Spin 1
     self.check_monomial(S_p(0, "x", spin=1), 1,
                         make_spin(1.0, SpinComponent.PLUS, 0, "x"))
     self.check_monomial(S_m(0, "x", spin=1), 1,
                         make_spin(1.0, SpinComponent.MINUS, 0, "x"))
     self.check_monomial(S_z(0, "x", spin=1), 1,
                         make_spin(1.0, SpinComponent.Z, 0, "x"))
     # Spin 3/2
     self.check_monomial(S_p(0, "x", spin=3 / 2), 1,
                         make_spin(3 / 2, SpinComponent.PLUS, 0, "x"))
     self.check_monomial(S_m(0, "x", spin=3 / 2), 1,
                         make_spin(3 / 2, SpinComponent.MINUS, 0, "x"))
     self.check_monomial(S_z(0, "x", spin=3 / 2), 1,
                         make_spin(3 / 2, SpinComponent.Z, 0, "x"))
Ejemplo n.º 2
0
 def test_powers_of_S_z(self):
     s = ExpressionR()
     for n in range(1, 12):
         p = c_dag()
         for _ in range(n):
             p *= S_z()
         p *= a()
         s += p
     self.assertEqual(
         s,
         c_dag() * (341.0 / 1024 + (1365.0 / 1024) * S_z()) * a())
Ejemplo n.º 3
0
 def test_S_z_products(self):
     mon_sz = Monomial([make_fermion(True, 1)] +
                       [make_spin(SpinComponent.Z, 1)] * 4 +
                       [make_fermion(True, 2)] +
                       [make_spin(SpinComponent.Z, 2)] * 4 +
                       [make_spin(SpinComponent.Z, 3)] * 3 +
                       [make_fermion(True, 4)] +
                       [make_spin(SpinComponent.Z, 4)] * 3)
     expr_sz = ExpressionR(1.0, mon_sz)
     self.assertEqual(
         expr_sz,
         c_dag(1) * 0.25 * 0.25 * c_dag(2) * 0.25 * 0.25 * 0.25 * S_z(3) *
         c_dag(4) * 0.25 * S_z(4))
Ejemplo n.º 4
0
    def test_kondo_int(self):
        J = np.array([1, 2, 3, 4], dtype=float)
        indices_up = [("up", 0), ("up", 1), ("up", 2), ("up", 3)]
        indices_dn = [("dn", 0), ("dn", 1), ("dn", 2), ("dn", 3)]
        indices_spin = [('a', 0), ('b', 1), ('c', 2), ('d', 3)]

        H1 = kondo_int(J)
        self.assertIsInstance(H1, ExpressionR)
        sp = [c_dag(i, "up") * c(i, "dn") for i in range(4)]
        sm = [c_dag(i, "dn") * c(i, "up") for i in range(4)]
        sz = [0.5 * (n(i, "up") - n(i, "dn")) for i in range(4)]

        ref1 = 1.0 * (0.5 * (sp[0] * S_m(0) + sm[0] * S_p(0)) + sz[0] * S_z(0))
        ref1 += 2.0 * (0.5 *
                       (sp[1] * S_m(1) + sm[1] * S_p(1)) + sz[1] * S_z(1))
        ref1 += 3.0 * (0.5 *
                       (sp[2] * S_m(2) + sm[2] * S_p(2)) + sz[2] * S_z(2))
        ref1 += 4.0 * (0.5 *
                       (sp[3] * S_m(3) + sm[3] * S_p(3)) + sz[3] * S_z(3))
        self.assertEqual(H1, ref1)

        H2 = kondo_int(1j * J)
        self.assertIsInstance(H2, ExpressionC)
        ref2 = 1j * ref1
        self.assertEqual(H2, ref2)

        H3 = kondo_int(J,
                       indices_up=indices_up,
                       indices_dn=indices_dn,
                       indices_spin=indices_spin)
        self.assertIsInstance(H3, ExpressionR)
        sp = [c_dag("up", i) * c("dn", i) for i in range(4)]
        sm = [c_dag("dn", i) * c("up", i) for i in range(4)]
        sz = [0.5 * (n("up", i) - n("dn", i)) for i in range(4)]

        ref3 = 1.0 * (0.5 * (sp[0] * S_m('a', 0) + sm[0] * S_p('a', 0)) +
                      sz[0] * S_z('a', 0))
        ref3 += 2.0 * (0.5 * (sp[1] * S_m('b', 1) + sm[1] * S_p('b', 1)) +
                       sz[1] * S_z('b', 1))
        ref3 += 3.0 * (0.5 * (sp[2] * S_m('c', 2) + sm[2] * S_p('c', 2)) +
                       sz[2] * S_z('c', 2))
        ref3 += 4.0 * (0.5 * (sp[3] * S_m('d', 3) + sm[3] * S_p('d', 3)) +
                       sz[3] * S_z('d', 3))
        self.assertEqual(H3, ref3)

        H4 = kondo_int(J, spin=1)
        self.assertIsInstance(H4, ExpressionR)
        sp = [c_dag(i, "up") * c(i, "dn") for i in range(4)]
        sm = [c_dag(i, "dn") * c(i, "up") for i in range(4)]
        sz = [0.5 * (n(i, "up") - n(i, "dn")) for i in range(4)]

        ref4 = 1.0 * (0.5 *
                      (sp[0] * S1_m(0) + sm[0] * S1_p(0)) + sz[0] * S1_z(0))
        ref4 += 2.0 * (0.5 *
                       (sp[1] * S1_m(1) + sm[1] * S1_p(1)) + sz[1] * S1_z(1))
        ref4 += 3.0 * (0.5 *
                       (sp[2] * S1_m(2) + sm[2] * S1_p(2)) + sz[2] * S1_z(2))
        ref4 += 4.0 * (0.5 *
                       (sp[3] * S1_m(3) + sm[3] * S1_p(3)) + sz[3] * S1_z(3))
        self.assertEqual(H4, ref4)
Ejemplo n.º 5
0
    def test_dzyaloshinskii_moriya(self):
        D = np.zeros((4, 4, 3), dtype=float)
        D[0, 1, :] = [1.0, 0, 0]
        D[1, 2, :] = [0, 2.0, 0]
        D[2, 3, :] = [0, 0, 3.0]
        indices = [('a', 0), ('b', 1), ('c', 2), ('d', 3)]

        H1 = dzyaloshinskii_moriya(D)
        self.assertIsInstance(H1, ExpressionC)
        ref1 = 1.0 * (S_y(0) * S_z(1) - S_z(0) * S_y(1)) \
            + 2.0 * (S_z(1) * S_x(2) - S_x(1) * S_z(2)) \
            + 3.0 * (S_x(2) * S_y(3) - S_y(2) * S_x(3))
        self.assertEqual(H1, ref1)

        H2 = dzyaloshinskii_moriya(D, indices=indices)
        self.assertIsInstance(H2, ExpressionC)
        ref2 = 1.0 * (S_y('a', 0) * S_z('b', 1) - S_z('a', 0) * S_y('b', 1)) \
            + 2.0 * (S_z('b', 1) * S_x('c', 2) - S_x('b', 1) * S_z('c', 2)) \
            + 3.0 * (S_x('c', 2) * S_y('d', 3) - S_y('c', 2) * S_x('d', 3))
        self.assertEqual(H2, ref2)

        H3 = dzyaloshinskii_moriya(D, spin=1)
        self.assertIsInstance(H3, ExpressionC)
        ref3 = 1.0 * (S1_y(0) * S1_z(1) - S1_z(0) * S1_y(1)) \
            + 2.0 * (S1_z(1) * S1_x(2) - S1_x(1) * S1_z(2)) \
            + 3.0 * (S1_x(2) * S1_y(3) - S1_y(2) * S1_x(3))
        self.assertEqual(H3, ref3)
Ejemplo n.º 6
0
    def test_Heisenberg(self):

        # Addition of 3D vectors
        def add(S1, S2):
            return (S1[0] + S2[0], S1[1] + S2[1], S1[2] + S2[2])

        # Dot-product of 3D vectors
        def dot(S1, S2):
            return S1[0] * S2[0] + S1[1] * S2[1] + S1[2] * S2[2]

        # Cross-product of vectors
        def cross(S1, S2):
            return (S1[1] * S2[2] - S1[2] * S2[1],
                    S1[2] * S2[0] - S1[0] * S2[2],
                    S1[0] * S2[1] - S1[1] * S2[0])

        N = 6
        S = [(S_x(i), S_y(i), S_z(i)) for i in range(N)]
        H = sum(dot(S[i], S[(i + 1) % N]) for i in range(N))
        S_tot = (ExpressionC(), ) * 3
        for i in range(N):
            S_tot += add(S_tot, S[i])

        # H must commute with the total spin
        self.assertEqual(len(H * S_tot[0] - S_tot[0] * H), 0)
        self.assertEqual(len(H * S_tot[1] - S_tot[1] * H), 0)
        self.assertEqual(len(H * S_tot[2] - S_tot[2] * H), 0)

        # Q3 is a higher-order integral of motion
        Q3 = sum(
            dot(cross(S[i], S[(i + 1) % N]), S[(i + 2) % N]) for i in range(N))
        self.assertEqual(len(H * Q3 - Q3 * H), 0)
Ejemplo n.º 7
0
 def test_spin12_products(self):
     self.assertEqual(S_z() * S_z(), ExpressionR(0.25))
     self.assertEqual(S_p() * S_p(), ExpressionR())
     self.assertEqual(S_m() * S_m(), ExpressionR())
     self.assertEqual(S_p() * S_z(), -0.5 * S_p())
     self.assertEqual(S_z() * S_m(), -0.5 * S_m())
     self.assertEqual(S_z() * S_p(), 0.5 * S_p())
     self.assertEqual(S_m() * S_z(), 0.5 * S_m())
     self.assertEqual(S_p() * S_m(), 0.5 + S_z())
     self.assertEqual(S_m() * S_p(), 0.5 - S_z())
Ejemplo n.º 8
0
    def test_jaynes_cummings(self):
        eps = np.array([1, 2, 3], dtype=float)
        omega = np.array([4, 5], dtype=float)
        g = np.array([[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]], dtype=float)
        indices_atom = [('a', 0), ('b', 1), ('c', 2)]
        indices_boson = [('x', 0), ('y', 1)]

        self.assertIsInstance(jaynes_cummings(eps, omega, g), ExpressionR)
        self.assertIsInstance(jaynes_cummings(1j * eps, omega, g), ExpressionC)
        self.assertIsInstance(jaynes_cummings(eps, 1j * omega, g), ExpressionC)
        self.assertIsInstance(jaynes_cummings(eps, omega, 1j * g), ExpressionC)

        H1 = jaynes_cummings(eps, omega, 1j * g)
        ref1 = S_z(0) + 2.0 * S_z(1) + 3.0 * S_z(2)
        ref1 += 4.0 * a_dag(0) * a(0) + 5.0 * a_dag(1) * a(1)
        ref1 += 0.1j * a_dag(0) * S_m(0) - 0.1j * a(0) * S_p(0)
        ref1 += 0.2j * a_dag(1) * S_m(0) - 0.2j * a(1) * S_p(0)
        ref1 += 0.3j * a_dag(0) * S_m(1) - 0.3j * a(0) * S_p(1)
        ref1 += 0.4j * a_dag(1) * S_m(1) - 0.4j * a(1) * S_p(1)
        ref1 += 0.5j * a_dag(0) * S_m(2) - 0.5j * a(0) * S_p(2)
        ref1 += 0.6j * a_dag(1) * S_m(2) - 0.6j * a(1) * S_p(2)
        self.assertEqual(H1, ref1)

        H2 = jaynes_cummings(eps,
                             omega,
                             1j * g,
                             indices_atom=indices_atom,
                             indices_boson=indices_boson)
        ref2 = S_z('a', 0) + 2.0 * S_z('b', 1) + 3.0 * S_z('c', 2)
        ref2 += 4.0 * a_dag('x', 0) * a('x', 0) \
            + 5.0 * a_dag('y', 1) * a('y', 1)
        ref2 += 0.1j * a_dag('x', 0) * S_m('a', 0) \
            - 0.1j * a('x', 0) * S_p('a', 0)
        ref2 += 0.2j * a_dag('y', 1) * S_m('a', 0) \
            - 0.2j * a('y', 1) * S_p('a', 0)
        ref2 += 0.3j * a_dag('x', 0) * S_m('b', 1) \
            - 0.3j * a('x', 0) * S_p('b', 1)
        ref2 += 0.4j * a_dag('y', 1) * S_m('b', 1) \
            - 0.4j * a('y', 1) * S_p('b', 1)
        ref2 += 0.5j * a_dag('x', 0) * S_m('c', 2) \
            - 0.5j * a('x', 0) * S_p('c', 2)
        ref2 += 0.6j * a_dag('y', 1) * S_m('c', 2) \
            - 0.6j * a('y', 1) * S_p('c', 2)
        self.assertEqual(H2, ref2)

        H3 = jaynes_cummings(eps, omega, 1j * g, spin=1)
        ref3 = S1_z(0) + 2.0 * S1_z(1) + 3.0 * S1_z(2)
        ref3 += 4.0 * a_dag(0) * a(0) + 5.0 * a_dag(1) * a(1)
        ref3 += 0.1j * a_dag(0) * S1_m(0) - 0.1j * a(0) * S1_p(0)
        ref3 += 0.2j * a_dag(1) * S1_m(0) - 0.2j * a(1) * S1_p(0)
        ref3 += 0.3j * a_dag(0) * S1_m(1) - 0.3j * a(0) * S1_p(1)
        ref3 += 0.4j * a_dag(1) * S1_m(1) - 0.4j * a(1) * S1_p(1)
        ref3 += 0.5j * a_dag(0) * S1_m(2) - 0.5j * a(0) * S1_p(2)
        ref3 += 0.6j * a_dag(1) * S1_m(2) - 0.6j * a(1) * S1_p(2)
        self.assertEqual(H3, ref3)
Ejemplo n.º 9
0
    def test_biquadratic_spin_int(self):
        J = np.array([[0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3], [0, 0, 0, 0]],
                     dtype=float)
        indices = [('a', 0), ('b', 1), ('c', 2), ('d', 3)]

        S0S1 = 0.5 * (S1_p(0) * S1_m(1) + S1_m(0) * S1_p(1)) \
            + S1_z(0) * S1_z(1)
        S1S2 = 0.5 * (S1_p(1) * S1_m(2) + S1_m(1) * S1_p(2)) \
            + S1_z(1) * S1_z(2)
        S2S3 = 0.5 * (S1_p(2) * S1_m(3) + S1_m(2) * S1_p(3)) \
            + S1_z(2) * S1_z(3)

        H1 = biquadratic_spin_int(J)
        self.assertIsInstance(H1, ExpressionR)
        ref1 = 1.0 * S0S1 * S0S1 + 2.0 * S1S2 * S1S2 + 3.0 * S2S3 * S2S3
        self.assertEqual(H1, ref1)

        H2 = biquadratic_spin_int(1j * J)
        self.assertIsInstance(H2, ExpressionC)
        ref2 = 1j * ref1
        self.assertEqual(H2, ref2)

        H3 = biquadratic_spin_int(J, indices=indices)
        self.assertIsInstance(H3, ExpressionR)

        S0S1 = 0.5 * (S1_p('a', 0) * S1_m('b', 1)
                      + S1_m('a', 0) * S1_p('b', 1)) \
            + S1_z('a', 0) * S1_z('b', 1)
        S1S2 = 0.5 * (S1_p('b', 1) * S1_m('c', 2)
                      + S1_m('b', 1) * S1_p('c', 2)) \
            + S1_z('b', 1) * S1_z('c', 2)
        S2S3 = 0.5 * (S1_p('c', 2) * S1_m('d', 3)
                      + S1_m('c', 2) * S1_p('d', 3)) \
            + S1_z('c', 2) * S1_z('d', 3)

        ref3 = 1.0 * S0S1 * S0S1 + 2.0 * S1S2 * S1S2 + 3.0 * S2S3 * S2S3
        self.assertEqual(H3, ref3)

        H4 = biquadratic_spin_int(J, indices=indices, spin=1 / 2)
        self.assertIsInstance(H4, ExpressionR)

        S0S1 = 0.5 * (S_p('a', 0) * S_m('b', 1) +
                      S_m('a', 0) * S_p('b', 1)) + S_z('a', 0) * S_z('b', 1)
        S1S2 = 0.5 * (S_p('b', 1) * S_m('c', 2) +
                      S_m('b', 1) * S_p('c', 2)) + S_z('b', 1) * S_z('c', 2)
        S2S3 = 0.5 * (S_p('c', 2) * S_m('d', 3) +
                      S_m('c', 2) * S_p('d', 3)) + S_z('c', 2) * S_z('d', 3)

        ref4 = 1.0 * S0S1 * S0S1 + 2.0 * S1S2 * S1S2 + 3.0 * S2S3 * S2S3
        self.assertEqual(H4, ref4)
Ejemplo n.º 10
0
    def test_rabi(self):
        eps = np.array([1, 2, 3], dtype=float)
        omega = np.array([4, 5], dtype=float)
        g = np.array([[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]], dtype=float)
        indices_atom = [('a', 0), ('b', 1), ('c', 2)]
        indices_boson = [('x', 0), ('y', 1)]

        self.assertIsInstance(rabi(eps, omega, np.zeros((3, 2))), ExpressionR)
        self.assertIsInstance(rabi(eps, omega, g), ExpressionC)
        self.assertIsInstance(rabi(1j * eps, omega, g), ExpressionC)
        self.assertIsInstance(rabi(eps, 1j * omega, g), ExpressionC)
        self.assertIsInstance(rabi(eps, omega, 1j * g), ExpressionC)

        H1 = rabi(eps, omega, g)
        ref1 = S_z(0) + 2.0 * S_z(1) + 3.0 * S_z(2)
        ref1 += 4.0 * a_dag(0) * a(0) + 5.0 * a_dag(1) * a(1)
        ref1 += 0.1 * S_x(0) * (a_dag(0) + a(0))
        ref1 += 0.2 * S_x(0) * (a_dag(1) + a(1))
        ref1 += 0.3 * S_x(1) * (a_dag(0) + a(0))
        ref1 += 0.4 * S_x(1) * (a_dag(1) + a(1))
        ref1 += 0.5 * S_x(2) * (a_dag(0) + a(0))
        ref1 += 0.6 * S_x(2) * (a_dag(1) + a(1))
        self.assertEqual(H1, ref1)

        H2 = rabi(eps,
                  omega,
                  g,
                  indices_atom=indices_atom,
                  indices_boson=indices_boson)
        ref2 = S_z('a', 0) + 2.0 * S_z('b', 1) + 3.0 * S_z('c', 2)
        ref2 += 4 * a_dag('x', 0) * a('x', 0) + 5 * a_dag('y', 1) * a('y', 1)
        ref2 += 0.1 * S_x('a', 0) * (a_dag('x', 0) + a('x', 0))
        ref2 += 0.2 * S_x('a', 0) * (a_dag('y', 1) + a('y', 1))
        ref2 += 0.3 * S_x('b', 1) * (a_dag('x', 0) + a('x', 0))
        ref2 += 0.4 * S_x('b', 1) * (a_dag('y', 1) + a('y', 1))
        ref2 += 0.5 * S_x('c', 2) * (a_dag('x', 0) + a('x', 0))
        ref2 += 0.6 * S_x('c', 2) * (a_dag('y', 1) + a('y', 1))
        self.assertEqual(H2, ref2)

        H3 = rabi(eps, omega, g, spin=1)
        ref3 = S1_z(0) + 2.0 * S1_z(1) + 3.0 * S1_z(2)
        ref3 += 4.0 * a_dag(0) * a(0) + 5.0 * a_dag(1) * a(1)
        ref3 += 0.1 * S1_x(0) * (a_dag(0) + a(0))
        ref3 += 0.2 * S1_x(0) * (a_dag(1) + a(1))
        ref3 += 0.3 * S1_x(1) * (a_dag(0) + a(0))
        ref3 += 0.4 * S1_x(1) * (a_dag(1) + a(1))
        ref3 += 0.5 * S1_x(2) * (a_dag(0) + a(0))
        ref3 += 0.6 * S1_x(2) * (a_dag(1) + a(1))
        self.assertEqual(H3, ref3)
Ejemplo n.º 11
0
    def test_spin_boson(self):
        eps = np.array([1, 2, 3], dtype=float)
        delta = np.array([4, 5, 6], dtype=float)
        delta_z = np.zeros((3, ))
        omega = np.array([7, 8], dtype=float)
        lambda_ = np.array([[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]], dtype=float)
        indices_spin = [('a', 0), ('b', 1), ('c', 2)]
        indices_boson = [('x', 0), ('y', 1)]

        self.assertIsInstance(spin_boson(eps, delta, omega, lambda_),
                              ExpressionC)
        self.assertIsInstance(spin_boson(eps, delta_z, omega, lambda_),
                              ExpressionR)
        self.assertIsInstance(spin_boson(1j * eps, delta_z, omega, lambda_),
                              ExpressionC)
        self.assertIsInstance(spin_boson(eps, delta_z, 1j * omega, lambda_),
                              ExpressionC)
        self.assertIsInstance(spin_boson(eps, delta_z, omega, 1j * lambda_),
                              ExpressionC)

        H1 = spin_boson(eps, delta, omega, 1j * lambda_)
        ref1 = -(S_z(0) + 2.0 * S_z(1) + 3.0 * S_z(2))
        ref1 += (4.0 * S_x(0) + 5.0 * S_x(1) + 6.0 * S_x(2))
        ref1 += 7.0 * a_dag(0) * a(0) + 8.0 * a_dag(1) * a(1)
        ref1 += S_z(0) * (0.1j * a_dag(0) - 0.1j * a(0))
        ref1 += S_z(0) * (0.2j * a_dag(1) - 0.2j * a(1))
        ref1 += S_z(1) * (0.3j * a_dag(0) - 0.3j * a(0))
        ref1 += S_z(1) * (0.4j * a_dag(1) - 0.4j * a(1))
        ref1 += S_z(2) * (0.5j * a_dag(0) - 0.5j * a(0))
        ref1 += S_z(2) * (0.6j * a_dag(1) - 0.6j * a(1))
        self.assertEqual(H1, ref1)

        H2 = spin_boson(eps,
                        delta,
                        omega,
                        1j * lambda_,
                        indices_spin=indices_spin,
                        indices_boson=indices_boson)
        ref2 = -(S_z('a', 0) + 2.0 * S_z('b', 1) + 3.0 * S_z('c', 2))
        ref2 += (4.0 * S_x('a', 0) + 5.0 * S_x('b', 1) + 6.0 * S_x('c', 2))
        ref2 += 7 * a_dag('x', 0) * a('x', 0) + 8 * a_dag('y', 1) * a('y', 1)
        ref2 += S_z('a', 0) * (0.1j * a_dag('x', 0) - 0.1j * a('x', 0))
        ref2 += S_z('a', 0) * (0.2j * a_dag('y', 1) - 0.2j * a('y', 1))
        ref2 += S_z('b', 1) * (0.3j * a_dag('x', 0) - 0.3j * a('x', 0))
        ref2 += S_z('b', 1) * (0.4j * a_dag('y', 1) - 0.4j * a('y', 1))
        ref2 += S_z('c', 2) * (0.5j * a_dag('x', 0) - 0.5j * a('x', 0))
        ref2 += S_z('c', 2) * (0.6j * a_dag('y', 1) - 0.6j * a('y', 1))
        self.assertEqual(H2, ref2)

        H3 = spin_boson(eps, delta, omega, 1j * lambda_, spin=1)
        ref3 = -(S1_z(0) + 2.0 * S1_z(1) + 3.0 * S1_z(2))
        ref3 += (4.0 * S1_x(0) + 5.0 * S1_x(1) + 6.0 * S1_x(2))
        ref3 += 7.0 * a_dag(0) * a(0) + 8.0 * a_dag(1) * a(1)
        ref3 += S1_z(0) * (0.1j * a_dag(0) - 0.1j * a(0))
        ref3 += S1_z(0) * (0.2j * a_dag(1) - 0.2j * a(1))
        ref3 += S1_z(1) * (0.3j * a_dag(0) - 0.3j * a(0))
        ref3 += S1_z(1) * (0.4j * a_dag(1) - 0.4j * a(1))
        ref3 += S1_z(2) * (0.5j * a_dag(0) - 0.5j * a(0))
        ref3 += S1_z(2) * (0.6j * a_dag(1) - 0.6j * a(1))
        self.assertEqual(H3, ref3)
Ejemplo n.º 12
0
    def test_anisotropic_heisenberg(self):
        Jx = np.array([[0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3], [0, 0, 0, 0]],
                      dtype=float)
        Jy = np.array([[0, 4, 0, 0], [0, 0, 5, 0], [0, 0, 0, 6], [0, 0, 0, 0]],
                      dtype=float)
        Jz = np.array([[0, 7, 0, 0], [0, 0, 8, 0], [0, 0, 0, 9], [0, 0, 0, 0]],
                      dtype=float)
        h = np.array([[0.3, 0, 0], [0, 0.4, 0], [0, 0, 0.5], [0, 0, 0]])
        indices = [('a', 0), ('b', 1), ('c', 2), ('d', 3)]

        H1 = anisotropic_heisenberg((Jx, Jy, Jz))
        self.assertIsInstance(H1, ExpressionC)
        ref1 = - 1.0 * S_x(0) * S_x(1) \
               - 4.0 * S_y(0) * S_y(1) \
               - 7.0 * S_z(0) * S_z(1) \
               - 2.0 * S_x(1) * S_x(2) \
               - 5.0 * S_y(1) * S_y(2) \
               - 8.0 * S_z(1) * S_z(2) \
               - 3.0 * S_x(2) * S_x(3) \
               - 6.0 * S_y(2) * S_y(3) \
               - 9.0 * S_z(2) * S_z(3)
        self.assertEqual(H1, ref1)

        H2 = anisotropic_heisenberg((Jx, Jy, Jz), h)
        self.assertIsInstance(H2, ExpressionC)
        ref2 = ref1 - 0.3 * S_x(0) - 0.4 * S_y(1) - 0.5 * S_z(2)
        self.assertEqual(H2, ref2)

        H3 = anisotropic_heisenberg((Jx, Jy, Jz), h, indices=indices)
        self.assertIsInstance(H3, ExpressionC)
        ref3 = - 1.0 * S_x('a', 0) * S_x('b', 1) \
               - 4.0 * S_y('a', 0) * S_y('b', 1) \
               - 7.0 * S_z('a', 0) * S_z('b', 1) \
               - 2.0 * S_x('b', 1) * S_x('c', 2) \
               - 5.0 * S_y('b', 1) * S_y('c', 2) \
               - 8.0 * S_z('b', 1) * S_z('c', 2) \
               - 3.0 * S_x('c', 2) * S_x('d', 3) \
               - 6.0 * S_y('c', 2) * S_y('d', 3) \
               - 9.0 * S_z('c', 2) * S_z('d', 3) \
               - 0.3 * S_x('a', 0) - 0.4 * S_y('b', 1) - 0.5 * S_z('c', 2)
        self.assertEqual(H3, ref3)

        H4 = anisotropic_heisenberg((Jx, Jy, Jz), h, indices=indices, spin=1)
        self.assertIsInstance(H4, ExpressionC)
        ref4 = - 1.0 * S1_x('a', 0) * S1_x('b', 1) \
               - 4.0 * S1_y('a', 0) * S1_y('b', 1) \
               - 7.0 * S1_z('a', 0) * S1_z('b', 1) \
               - 2.0 * S1_x('b', 1) * S1_x('c', 2) \
               - 5.0 * S1_y('b', 1) * S1_y('c', 2) \
               - 8.0 * S1_z('b', 1) * S1_z('c', 2) \
               - 3.0 * S1_x('c', 2) * S1_x('d', 3) \
               - 6.0 * S1_y('c', 2) * S1_y('d', 3) \
               - 9.0 * S1_z('c', 2) * S1_z('d', 3) \
               - 0.3 * S1_x('a', 0) - 0.4 * S1_y('b', 1) - 0.5 * S1_z('c', 2)
        self.assertEqual(H4, ref4)
Ejemplo n.º 13
0
    def test_heisenberg(self):
        J = np.array([[0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3], [0, 0, 0, 0]],
                     dtype=float)
        h = np.array([[0.3, 0, 0], [0, 0.4, 0], [0, 0, 0.5], [0, 0, 0]])
        indices = [('a', 0), ('b', 1), ('c', 2), ('d', 3)]

        H1 = heisenberg(J)
        self.assertIsInstance(H1, ExpressionR)
        ref1 = - 0.5 * S_p(0) * S_m(1) \
               - 0.5 * S_m(0) * S_p(1) \
               - 1.0 * S_z(0) * S_z(1) \
               - 1.0 * S_p(1) * S_m(2) \
               - 1.0 * S_m(1) * S_p(2) \
               - 2.0 * S_z(1) * S_z(2) \
               - 1.5 * S_p(2) * S_m(3) \
               - 1.5 * S_m(2) * S_p(3) \
               - 3.0 * S_z(2) * S_z(3)
        self.assertEqual(H1, ref1)

        H2 = heisenberg(1j * J)
        self.assertIsInstance(H2, ExpressionC)
        ref2 = 1j * ref1
        self.assertEqual(H2, ref2)

        H3 = heisenberg(J, h)
        self.assertIsInstance(H3, ExpressionC)
        ref3 = ref1 - 0.3 * S_x(0) - 0.4 * S_y(1) - 0.5 * S_z(2)
        self.assertEqual(H3, ref3)

        H4 = heisenberg(J, h, indices=indices)
        self.assertIsInstance(H4, ExpressionC)
        ref4 = - 0.5 * S_p('a', 0) * S_m('b', 1) \
               - 0.5 * S_m('a', 0) * S_p('b', 1) \
               - 1.0 * S_z('a', 0) * S_z('b', 1) \
               - 1.0 * S_p('b', 1) * S_m('c', 2) \
               - 1.0 * S_m('b', 1) * S_p('c', 2) \
               - 2.0 * S_z('b', 1) * S_z('c', 2) \
               - 1.5 * S_p('c', 2) * S_m('d', 3) \
               - 1.5 * S_m('c', 2) * S_p('d', 3) \
               - 3.0 * S_z('c', 2) * S_z('d', 3) \
               - 0.3 * S_x('a', 0) - 0.4 * S_y('b', 1) - 0.5 * S_z('c', 2)
        self.assertEqual(H4, ref4)

        H5 = heisenberg(J, h, indices=indices, spin=1)
        self.assertIsInstance(H5, ExpressionC)
        ref5 = - 0.5 * S1_p('a', 0) * S1_m('b', 1) \
               - 0.5 * S1_m('a', 0) * S1_p('b', 1) \
               - 1.0 * S1_z('a', 0) * S1_z('b', 1) \
               - 1.0 * S1_p('b', 1) * S1_m('c', 2) \
               - 1.0 * S1_m('b', 1) * S1_p('c', 2) \
               - 2.0 * S1_z('b', 1) * S1_z('c', 2) \
               - 1.5 * S1_p('c', 2) * S1_m('d', 3) \
               - 1.5 * S1_m('c', 2) * S1_p('d', 3) \
               - 3.0 * S1_z('c', 2) * S1_z('d', 3) \
               - 0.3 * S1_x('a', 0) - 0.4 * S1_y('b', 1) - 0.5 * S1_z('c', 2)
        self.assertEqual(H5, ref5)
Ejemplo n.º 14
0
    def test_ising(self):
        J = np.array([[0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3], [0, 0, 0, 0]],
                     dtype=float)
        h_l = np.array([0.3, 0.4, 0.5, 0.0])
        h_t = np.array([0.0, 0.6, 0.7, 0.8])
        indices = [('a', 0), ('b', 1), ('c', 2), ('d', 3)]

        H1 = ising(J)
        self.assertIsInstance(H1, ExpressionR)
        ref1 = - 1.0 * S_z(0) * S_z(1) \
               - 2.0 * S_z(1) * S_z(2) \
               - 3.0 * S_z(2) * S_z(3)
        self.assertEqual(H1, ref1)

        H2 = ising(1j * J)
        self.assertIsInstance(H2, ExpressionC)
        ref2 = 1j * ref1
        self.assertEqual(H2, ref2)

        H3 = ising(J, h_l=h_l)
        self.assertIsInstance(H3, ExpressionR)
        ref3 = ref1 - 0.3 * S_z(0) - 0.4 * S_z(1) - 0.5 * S_z(2)
        self.assertEqual(H3, ref3)

        H4 = ising(J, h_l=1j * h_l)
        self.assertIsInstance(H4, ExpressionC)
        ref4 = ref1 - 1j * (0.3 * S_z(0) + 0.4 * S_z(1) + 0.5 * S_z(2))
        self.assertEqual(H4, ref4)

        H5 = ising(J, h_t=h_t)
        self.assertIsInstance(H5, ExpressionC)
        ref5 = ref1 - 0.6 * S_x(1) - 0.7 * S_x(2) - 0.8 * S_x(3)
        self.assertEqual(H5, ref5)

        H6 = ising(J, h_t=1j * h_t)
        self.assertIsInstance(H6, ExpressionC)
        ref6 = ref1 - 1j * (0.6 * S_x(1) + 0.7 * S_x(2) + 0.8 * S_x(3))
        self.assertEqual(H6, ref6)

        H7 = ising(J, h_l, h_t, indices=indices)
        self.assertIsInstance(H7, ExpressionC)
        ref7 = - 1.0 * S_z('a', 0) * S_z('b', 1) \
               - 2.0 * S_z('b', 1) * S_z('c', 2) \
               - 3.0 * S_z('c', 2) * S_z('d', 3) \
               - 0.3 * S_z('a', 0) - 0.4 * S_z('b', 1) - 0.5 * S_z('c', 2) \
               - 0.6 * S_x('b', 1) - 0.7 * S_x('c', 2) - 0.8 * S_x('d', 3)
        self.assertEqual(H7, ref7)

        H8 = ising(J, h_l, h_t, indices=indices, spin=1)
        self.assertIsInstance(H8, ExpressionC)
        ref8 = - 1.0 * S1_z('a', 0) * S1_z('b', 1) \
               - 2.0 * S1_z('b', 1) * S1_z('c', 2) \
               - 3.0 * S1_z('c', 2) * S1_z('d', 3) \
               - 0.3 * S1_z('a', 0) - 0.4 * S1_z('b', 1) - 0.5 * S1_z('c', 2)\
               - 0.6 * S1_x('b', 1) - 0.7 * S1_x('c', 2) - 0.8 * S1_x('d', 3)
        self.assertEqual(H8, ref8)
Ejemplo n.º 15
0
#   M. P. Grabowski and P. Mathieu
#   Mod. Phys. Lett. A, Vol. 09, No. 24, pp. 2197-2206 (1994),
#   https://doi.org/10.1142/S0217732394002057
#

from numpy import array, zeros, dot, cross
from pycommute.expression import S_x, S_y, S_z
from pycommute.models import heisenberg

# Number of spins in the chain
N = 20
# Heisenberg exchange constant
g = 2

# List of 3-component spin vectors {S_0, S_1, ..., S_{N-1}}
S = [array([S_x(i), S_y(i), S_z(i)]) for i in range(N)]

# Matrix of exchange constants between spins i and j
exchange_matrix = zeros((N, N))
# Set elements corresponding to the nearest neighbors to -g
# (index shift modulo N ensures periodic boundary conditions).
for i in range(N):
    exchange_matrix[i, (i + 1) % N] = -g

# Hamiltonian of the spin-1/2 Heisenberg chain.
H = heisenberg(exchange_matrix)

# Total spin of the chain.
S_tot = array(sum(S))

# All three components of S commute with the Hamiltonian.