Ejemplo n.º 1
0
    def crop_raster(self, coordinates, src_path, final_path):
        """
        Recorta la imagen a partir de un par de coordenadas (x,y) determinado.
        VORSICHT: quizás debería agregar el sistema de coordenadas como parámetro.
        Actualmente no está de esa manera porque todas las coordenadas con las que se trabajan son ws84 pero nunca se sabe...
        VORSICHT 2: debería controlar que las coordenadas estén dentro del rango de la imagen
        """
        src = self._load_image(src_path)

        polygon = box(coordinates[0], coordinates[1], coordinates[2], coordinates[3])
        geo_dataframe = gpd.GeoDataFrame({'geometry': polygon}, index=[0], crs=from_epsg(4326))
        geo_dataframe = geo_dataframe.to_crs(crs=src.crs.data)  # ponele

        polygon_coordinates = [js.loads(geo_dataframe.to_json())['features'][0]['geometry']]

        epsg_code = int(src.crs.data['init'][5:])

        out_img, out_transform = mask(src, shapes=polygon_coordinates, crop=True)

        metadata = src.meta.copy()

        cropped_crs = parse.from_epsg_code(epsg_code).to_proj4()

        metadata.update({"driver": "GTiff",
                         "height": out_img.shape[1],
                         "width": out_img.shape[2],
                         "transform": out_transform,
                         "crs": cropped_crs,
                         "dtype": rasterio.float32})

        with rasterio.open(final_path, "w", **metadata) as dest:
            dest.write(out_img)
Ejemplo n.º 2
0
def convert_crs(from_crs, crs_type='proj4', pass_str=False):
    """
    Convenience function to convert one crs format to another.

    Parameters
    ----------
    from_crs: int or str
        The crs as either an epsg number or a str in a common crs format (e.g. proj4 or wkt).
    crs_type: str
        Output format type of the crs ('proj4', 'wkt', 'proj4_dict', or 'netcdf_dict').
    pass_str: str
        If input is a str, should it be passed though without conversion?

    Returns
    -------
    str or dict
    """

    ### Load in crs
    if all([pass_str, isinstance(from_crs, str)]):
        crs2 = from_crs
    else:
        if isinstance(from_crs, int):
            crs1 = parse.from_epsg_code(from_crs)
        elif isinstance(from_crs, str):
            crs1 = parse.from_unknown_text(from_crs)
        else:
            raise ValueError('from_crs must be an int or str')

        ### Convert to standard formats
        if crs_type == 'proj4':
            crs2 = crs1.to_proj4()
        elif crs_type == 'wkt':
            crs2 = crs1.to_ogc_wkt()
        elif crs_type in ['proj4_dict', 'netcdf_dict']:
            crs1a = crs1.to_proj4()
            crs1b = crs1a.replace('+', '').split()[:-1]
            crs1c = dict(i.split('=') for i in crs1b)
            crs2 = dict((i, float(crs1c[i])) for i in crs1c)
        else:
            raise ValueError(
                'Select one of "proj4", "wkt", "proj4_dict", or "netcdf_dict"')
        if crs_type == 'netcdf_dict':
            crs3 = {}
            for i in crs2:
                if i in proj4_netcdf_var.keys():
                    t1 = proj4_netcdf_var[i]
                    if isinstance(t1, tuple):
                        crs3.update({j: crs2[i] for j in t1})
                    else:
                        crs3.update({proj4_netcdf_var[i]: crs2[i]})
            if crs3['transform_name'] in proj4_netcdf_name.keys():
                gmn = proj4_netcdf_name[crs3['transform_name']]
                crs3.update({'transform_name': gmn})
            else:
                raise ValueError('No appropriate netcdf projection.')
            crs2 = crs3

    return crs2
Ejemplo n.º 3
0
def xy_to_gpd(id_col, x_col, y_col, df=None, crs=2193):
    """
    Function to convert a DataFrame with x and y coordinates to a GeoDataFrame.

    Parameters
    ----------
    df: Dataframe
        The DataFrame with the location data.
    id_col: str or list of str
        The column(s) from the dataframe to be returned. Either a one name string or a list of column names.
    xcol: str or ndarray
        Either the column name that has the x values within the df or an array of x values.
    ycol: str or ndarray
        Same as xcol except for y.
    crs: int
        The projection of the data.

    Returns
    -------
    GeoDataFrame
        Of points.
    """

    if isinstance(x_col, str):
        geometry = [Point(xy) for xy in zip(df[x_col], df[y_col])]
    else:
        geometry = [Point(xy) for xy in zip(x_col, y_col)]
    if isinstance(id_col, str) & (df is not None):
        id_data = df[id_col]
    elif isinstance(id_col, list):
        if df is not None:
            id_data = df[id_col]
        else:
            id_data = id_col
    elif isinstance(id_col, (np.ndarray, pd.Series, pd.Index)):
        id_data = id_col
    else:
        raise ValueError('id_data could not be determined')
    if isinstance(crs, int):
        crs1 = parse.from_epsg_code(crs).to_proj4()
    elif isinstance(crs, (str, dict)):
        crs1 = crs
    else:
        raise ValueError('crs must be an int, str, or dict')
    gpd1 = gpd.GeoDataFrame(id_data, geometry=geometry, crs=crs1)
    return gpd1
Ejemplo n.º 4
0
def rd_sql_geo(server, database, table, col_stmt, where_lst=None):
    """
    Function to extract the geometry and coordinate system from an SQL geometry field. Returns a shapely geometry object and a proj4 str.

    Parameters
    ----------
    server : str
        The server name. e.g.: 'SQL2012PROD03'
    database : str
        The specific database within the server. e.g.: 'LowFlows'
    table : str
        The specific table within the database. e.g.: 'LowFlowSiteRestrictionDaily'
    where_lst : list
        A list of where statements to be passed and added to the final SQL statement.

    Returns
    -------
    list of shapely geometry objects
        The main output is a list of shapely geometry objects for all queried rows of the SQL table.
    str
        The second output is a proj4 str of the projection system.
    """

    ## Create connection to database
    engine = create_engine('mssql', server, database)

    geo_col_stmt = "SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME=" + "\'" + table + "\'" + " AND DATA_TYPE='geometry'"
    geo_col = str(pd.read_sql(geo_col_stmt, engine).iloc[0, 0])
    geo_srid_stmt = "select distinct " + geo_col + ".STSrid from " + table
    geo_srid = int(pd.read_sql(geo_srid_stmt, engine).iloc[0, 0])
    if where_lst is not None:
        if len(where_lst) > 0:
            stmt2 = "SELECT " + col_stmt + ", " + geo_col + ".STAsBinary() as geometry" + " FROM " + table + " where " + " and ".join(
                where_lst)
        else:
            stmt2 = "SELECT " + col_stmt + ", " + geo_col + ".STAsBinary() as geometry" + " FROM " + table
    else:
        stmt2 = "SELECT " + col_stmt + ", " + geo_col + ".STAsBinary() as geometry" + " FROM " + table
    df2 = pd.read_sql(stmt2, engine)
    df2['geometry'] = df2.geometry.apply(lambda x: loads(x))
    #    proj4 = from_epsg_code(geo_srid).to_proj4()
    #    crs = {'init' :'epsg:' + str(geo_srid)}
    crs = parse.from_epsg_code(geo_srid).to_proj4()
    geo_df = GeoDataFrame(df2, geometry='geometry', crs=crs)

    return geo_df
Ejemplo n.º 5
0
    def crop(self, lat, long, outPath):
        dimX = 224
        dimY = 224

        x, y, zN, zL = utm.from_latlon(lat, long)
        with rio.open(self.filepath, "r") as raster:
            minx, miny = x - dimX/2, y - dimY/2
            maxx, maxy = x + dimX/2, y + dimY/2
            square = box(minx, miny, maxx, maxy)
            #gdf = gpd.GeoDataFrame({'geometry': square}, index = [0], crs=from_epsg(4326))
            gdf = gpd.GeoDataFrame({'geometry': square}, index = [0], crs=raster.crs.data)
            print(raster.crs.data)
            #gdf = gdf.to_crs(crs = raster.crs.data)
            #print("no crash")
            coords = self.__getFeatures(gdf)
            
            out_img, out_transform = mask(raster, coords, crop = True)
            out_meta = raster.meta.copy()
            epsg_code = int(raster.crs.data['init'][5:])
            print(epsg_code)
            out_meta.update({"driver": "GTiff", "height": out_img.shape[1], "width": out_img.shape[2], "transform": out_transform, "crs": from_epsg_code(epsg_code).to_proj4()})
            with rio.open(outPath, "w", **out_meta) as dest:
                dest.write(out_img)
Ejemplo n.º 6
0
def clipper(request, indice_requested=None, show_flag=False, base_path=str):
    """
    Clips the raster image to the ROI and saves it.
    :param request: request number for the downloaded images
    :type request: str
    :rtype: None
    """
    print("=======================")
    print("Clipping indices to ROI")

    indice_list = ["ndmi", "ndvi", "savi", "msavi", "ndwi"]
    choice = []
    for idx, boolean in enumerate(indice_requested):
        if boolean == True:
            choice.append(idx)
    indices = [indice_list[i] for i in indice_requested]

    # indices = ["msavi"]
    for index in indices:
        fp = glob.glob(f"{base_path}.{request}/**/*{index}*", recursive=True)

        # for f_name in fp:
        #     print(f_name)

        length_path_list = len(fp)
        print(f"length of list : {length_path_list}")
        out_tif = [None] * length_path_list

        for i in range(length_path_list):
            split_path = fp[i].split('/')
            out_tif[i] = '/'.join(split_path[:-1] + [
                f"{split_path[-2]}_clipped_{indices[0]}_{split_path[-1].split('_')[-1]}"
            ])

        # for f_path in fp:
        #     print(f_path)

        # for out in out_tif:
        #     print(out)

        data = [None] * length_path_list
        geo = [None] * length_path_list
        coords = [None] * length_path_list
        out_img = [None] * length_path_list
        out_transform = [None] * length_path_list
        out_meta = [None] * length_path_list
        epsg_code = [None] * length_path_list

        for i, f_path in enumerate(fp):
            data[i] = rasterio.open(f_path)

        [minx, miny, maxx, maxy] = csv_crawler(clipper=True)
        print(minx, miny, maxx, maxy)

        bbox = box(minx, miny, maxx, maxy)

        for i in range(length_path_list):
            geo[i] = gpd.GeoDataFrame({'geometry': bbox},
                                      index=[0],
                                      crs=from_epsg(4326))
            # noinspection PyUnresolvedReferences
            geo[i] = geo[i].to_crs(crs=data[i].crs.data)

        for i in range(length_path_list):
            # noinspection PyTypeChecker
            coords[i] = getFeatures(geo[i])
            # print(coords[i])

        for i in range(length_path_list):
            # print(i)
            out_img[i], out_transform[i] = mask(data[i],
                                                shapes=coords[i],
                                                crop=True)

        for i in range(length_path_list):
            out_meta[i] = data[i].meta.copy()
            # print(out_meta[i])

        for i in range(length_path_list):
            # temp_dict = data[i].crs.data
            # print(temp_dict['init'])
            epsg_code[i] = int(data[i].crs.data['init'].split(':')[-1])
            # print(i, epsg_code[i])

        for i in range(length_path_list):
            out_meta[i].update({
                "driver":
                "GTiff",
                "height":
                out_img[i].shape[1],
                "width":
                out_img[i].shape[2],
                "transform":
                out_transform[i],
                "crs":
                parse.from_epsg_code(epsg_code[i]).to_proj4()
            })

        for i in range(length_path_list):
            with rasterio.open(out_tif[i], "w", **out_meta[i]) as destination:
                destination.write(out_img[i])

        if show_flag == True:
            for i in range(length_path_list):
                clipped = rasterio.open(out_tif[i])
                show(clipped, cmap="terrain")
            # print(clipped.shape)

    print("Indices clipped sucessfully!!!")