def extract(my_path_folder,file, my_start_month, my_start_day, my_end_month, my_end_day):
    my_extraction=DaisyDlf(my_path_folder+'\\'+'%s.dlf' %file)
    my_extraction=my_extraction.Data
    years=np.unique([my_extraction.index[i].year for i in range(len(my_extraction.index))])
    my_extraction['Date']=my_extraction.index
    my_extraction.index=np.arange(0,len(my_extraction))
    my_start, my_end = [], []
    for i in range(len(years)-1):
        my_start.append(my_extraction['Date'][my_extraction['Date'] == datetime.strptime('%0d-%02d-%02d 00:00:00'%(years[i+1], my_start_month, my_start_day), "%Y-%m-%d %H:%M:%S")].index[0])
        my_end.append(my_extraction['Date'][my_extraction['Date'] == datetime.strptime('%0d-%02d-%02d 00:00:00'%(years[i+1], my_end_month, my_end_day), "%Y-%m-%d %H:%M:%S")].index[0])            
    return my_extraction, my_start, my_end
Ejemplo n.º 2
0
                # find simulated data in corresponding folder
                for my_start_year, folder in enumerate(
                        sensitivity_analysis['%d' % threshold + '_' +
                                             '%d' % space]):

                    print('extraction from folder nb:', my_start_year)
                    # store the pesticide outputs from Daisy
                    field_chemicals = defaultdict()
                    for chem in chemicals:
                        field_chemicals[chem] = DaisyDlf(
                            path_folder + '\\' + folder + '\\' +
                            '%s-%s_%s_field_%s.dlf' %
                            (prefix, depth, col, chem)).Data
                        field_chemicals[chem]['Date'] = field_chemicals[
                            chem].index
                        field_chemicals[chem].index = np.arange(
                            0, len(field_chemicals[chem]))

                    # use the harvest file to select find starting and ending
                    # index of 3-month monitoring period each year
                    harvest = DaisyDlf(path_folder + '\\' + folder + '\\' +
                                       '%s-harvest.dlf' % prefix)
                    harvest = harvest.Data
                    harvest['Date'] = harvest.index
                    harvest.index = np.arange(0, len(harvest))
                    start_harvest = (np.where(
                        harvest['Date'] == datetime.strptime(
                            '%d-%02d-%02d 00:00:00' %
                            (my_start_dates[my_start_year], 9,
                             25), "%Y-%m-%d %H:%M:%S"))[0][0])
                    # store the starting and ending index every year,
                    # and corresponding water outputs