def hodge_decomposition(omega): """ For a given p-cochain \omega there is a unique decomposition \omega = d(\alpha) + \delta(\beta) (+) h for p-1 cochain \alpha, p+1 cochain \beta, and harmonic p-cochain h. This function returns (non-unique) representatives \beta, \gamma, and h which satisfy the equation above. Example: #decompose a random 1-cochain sc = SimplicialComplex(...) omega = sc.get_cochain(1) omega.[:] = rand(*omega.shape) (alpha,beta,h) = hodge_decomposition(omega) """ sc = omega.complex p = omega.k alpha = sc.get_cochain(p - 1) beta = sc.get_cochain(p + 1) # Solve for alpha A = delta(d(sc.get_cochain_basis(p - 1))).v b = delta(omega).v alpha.v = cg(A, b, tol=1e-8)[0] # Solve for beta A = d(delta(sc.get_cochain_basis(p + 1))).v b = d(omega).v beta.v = cg(A, b, tol=1e-8)[0] # Solve for h h = omega - d(alpha) - delta(beta) return (alpha, beta, h)
def hodge_decomposition(omega): """ For a given p-cochain \omega there is a unique decomposition \omega = d(\alpha) + \delta(\beta) (+) h for p-1 cochain \alpha, p+1 cochain \beta, and harmonic p-cochain h. This function returns (non-unique) representatives \beta, \gamma, and h which satisfy the equation above. Example: #decompose a random 1-cochain sc = SimplicialComplex(...) omega = sc.get_cochain(1) omega.[:] = rand(*omega.shape) (alpha,beta,h) = hodge_decomposition(omega) """ sc = omega.complex p = omega.k alpha = sc.get_cochain(p - 1) beta = sc.get_cochain(p + 1) # Solve for alpha A = delta(d(sc.get_cochain_basis(p - 1))).v b = delta(omega).v alpha.v = cg( A, b, tol=1e-8 )[0] # Solve for beta A = d(delta(sc.get_cochain_basis(p + 1))).v b = d(omega).v beta.v = cg( A, b, tol=1e-8 )[0] # Solve for h h = omega - d(alpha) - delta(beta) return (alpha,beta,h)
def plotjson(fn): """ plotjson: make plots from json output of fiedler.py fn: the filename of the json file """ fo=open(fn) data=json.load(fo) fo.close() if "adj" in data: (A,adj,Npts) = fiedler.adj_mat(data["adj"]) #scew symetricise A = (A.T - A)/2 A=A.tocoo() pos=A.data>0 skew = numpy.column_stack((A.row[pos],A.col[pos],A.data[pos])).tolist() # #method from hodge decomposition driver.py # sc = simplicial_complex(([[el] for el in range(0,A.shape[0])],numpy.column_stack((A.row[pos],A.col[pos])).tolist())) # omega = sc.get_cochain(1) # omega.v[:] = A.data[pos] # p = omega.k # alpha = sc.get_cochain(p - 1) # #beta = sc.get_cochain(p + 1) # # Solve for alpha # A2 = delta(d(sc.get_cochain_basis(p - 1))).v # b = delta(omega).v # rank=cg( A2, b, tol=1e-8 )[0] # method from ranking driver.py asc = abstract_simplicial_complex([numpy.column_stack((A.row[pos],A.col[pos])).tolist()]) B1 = asc.chain_complex()[1] # boundary matrix rank = lsqr(B1.T, A.data[pos])[0] # solve least squares problem sc = simplicial_complex(([[el] for el in range(0,A.shape[0])],numpy.column_stack((A.row[pos],A.col[pos])).tolist())) omega = sc.get_cochain(1) omega.v[:] = A.data[pos] p = omega.k alpha = sc.get_cochain(p - 1) alpha.v = rank v = A.data[pos]-d(alpha).v cyclic_adj_list=numpy.column_stack((A.row[pos],A.col[pos],v)).tolist() div_adj_list=numpy.column_stack((A.row[pos],A.col[pos],d(alpha).v)).tolist() data["hodge"]=list(rank) data["hodgerank"]=list(numpy.argsort(numpy.argsort(rank))) fo = open(fn,"w") json.dump(data,fo, indent=2) fo.close() fn=fn+".abstract" #fiedler.doPlots(numpy.array(data["f1"]),numpy.array(data["f2"]),numpy.array(data["d"]),cyclic_adj_list,fn+".decomp.cyclic.",widths=[6],vsdeg=False,nByi=data["nByi"],directed=True) #fiedler.doPlots(numpy.array(data["f1"]),numpy.array(data["f2"]),numpy.array(data["d"]),div_adj_list,fn+".decomp.acyclic.",widths=[6],vsdeg=False,nByi=data["nByi"],directed=True) #fiedler.doPlots(numpy.array(data["f1"]),numpy.array(data["f2"]),numpy.array(data["d"]),data["adj"],fn+".decomp.acyclic.over.all.",widths=[6],vsdeg=False,nByi=data["nByi"],adj_list2=div_adj_list,directed=True) #fiedler.doPlots(numpy.array(data["f1"]),-1*numpy.array(rank),numpy.array(data["d"]),cyclic_adj_list,fn+".decomp.harmonic.v.grad.",widths=[6],heights=[2],vsdeg=False,nByi=data["nByi"],directed=True) #fiedler.doPlots(numpy.array(data["f1"]),-1*numpy.array(rank),numpy.array(data["d"]),skew,fn+".decomp.skew.v.grad.",widths=[6],heights=[2],vsdeg=False,nByi=data["nByi"],directed=True) #fiedler.doPlots(numpy.array(data["f1"]),-1*numpy.array(rank),numpy.array(data["d"]),data["adj"],fn+".decomp.acyclic.over.all.v.grad.",widths=[6],heights=[2],vsdeg=False,nByi=data["nByi"],adj_list2=div_adj_list,directed=True) fiedler.doPlots(numpy.array(data["f1"]),-1*numpy.array(rank),numpy.array(data["d"]),data["adj"],fn+".all.v.grad.",widths=[24],heights=[6],vsdeg=False,nByi=data["nByi"],directed=False)