Ejemplo n.º 1
0
def optimize_lineup(df, good_list, alright_list, meh_list):
    optimizer = get_optimizer(Site.FANDUEL, Sport.BASKETBALL)
    optimizer.load_players_from_csv("fanduel.csv")

    df['name'] = df.apply(lambda row: (str.split(row['name'], ' Jr.')[0]), axis=1)
    for player in optimizer.players:
        if player.full_name in df['name'].unique():
            projected_score = df.loc[
                (df['name'] == player.full_name) & (df['team'] == NBA_TEAMS.find_NBA_abrev(player.team))][
                'Projected Score'].tolist()
            if len(projected_score) > 0:
                player.fppg = projected_score[0]
            else:
                player.fppg = 0

            # print(f"{player.full_name:}{projected_score}")
        else:
            player.fppg = 0

    optimizer.set_min_salary_cap(60000)
    optimizer.set_max_repeating_players(2)
    optimizer.add_stack(TeamStack(2, for_teams=good_list))
    optimizer.add_stack(TeamStack(2, for_teams=alright_list))
    optimizer.add_stack(TeamStack(1, for_teams=meh_list))
    # for lineup in optimizer.optimize(n=50):
    #     print(lineup)
    #     print(lineup.players)  # list of players
    #     print(lineup.fantasy_points_projection)
    #     print(lineup.salary_costs)

    exporter = CSVLineupExporter(optimizer.optimize(n=50))
    exporter.export('lineups.csv')
    print("Lineups optimized and exported!")
Ejemplo n.º 2
0
def dk_lineup(request):
    import requests
    # check if most recent lineups were already created.
    from pydfs_lineup_optimizer import get_optimizer, Site, Sport, CSVLineupExporter
    project = os.environ["PROJECT_ID"]
    bucket = os.environ["BUCKET"]
    dataset_base = os.environ["DATASET_BASE"]
    dataset_dfs = os.environ["DATASET_DFS"]
    today = (datetime.now() - timedelta(hours=4)).strftime('%Y-%m-%d')
    request_json = request.get_json(silent=True)

    starting_lineups = "https://us-central1-{}.cloudfunctions.net/starting_lineups"
    r = requests.post(starting_lineups.format(project))

    if request_json and "n_lineups" in request_json:
        n_lineups = int(request_json.get("n_lineups"))
        if n_lineups > 100:
            n_lineups = 100
    else:
        n_lineups = 100

    df = get_draftkings_predictions(project=project,
                                    dataset_base=dataset_base,
                                    dataset_dfs=dataset_dfs,
                                    dt=today.replace("-", ""))
    df.to_csv("/tmp/mlb_dk.csv", index=False)
    optimizer = get_optimizer(Site.DRAFTKINGS, Sport.BASEBALL)
    optimizer.load_players_from_csv("/tmp/mlb_dk.csv")
    exporter = CSVLineupExporter(optimizer.optimize(n_lineups))
    exporter.export("/tmp/lineups.csv")

    # lineups = pd.DataFrame()
    # cols = ["pos", "first", "last", "position", "team", "opp", "fppg", "salary"]
    # i=1
    # for lineup in optimizer.optimize(n=n_lineups):
    #     lineup_list = lineup.printer.print_lineup(lineup).split("\n")[0:10]
    #     lineup_df = pd.concat([pd.DataFrame(dict(zip(cols,re.split("\s{1,}",x.strip())[1:9])),index=[0])
    #                            for x in lineup_list], axis=0, ignore_index=True)
    #     lineup_df["lineup_number"] = i
    #     i+=1
    #     lineups = pd.concat([lineups, lineup_df], ignore_index=True)
    #
    # # lineups.columns = ["pos", "first", "last", "position", "team", "opp", "projection", "salary", "lineup_number"]
    # lineups.to_csv("/tmp/lineups.csv", index=False)
    upload_blob(bucket_name=bucket,
                source_file_name="/tmp/lineups.csv",
                destination_blob_name="lineups/daily_dk_lineups.csv")

    upload_blob(bucket_name=bucket,
                source_file_name="/tmp/lineups.csv",
                destination_blob_name="lineups/mlb/dk_lineups_{}.csv".format(
                    today.replace("-", "")))

    lineup_link = "https://storage.cloud.google.com/{bucket}/lineups/daily_dk_lineups.csv"

    return lineup_link.format(bucket=bucket, dt=today.replace("-", ""))
def save_click():
    init_dir = ""
    if (selected_sport.get() == 1):
        init_dir = '/home/pete/Documents/dk_lineups'
    elif (selected_sport.get() == 2):
        init_dir = '/home/pete/Documents/nhl/dk_lineups'
    results = filedialog.asksaveasfilename(initialdir=init_dir,
                                           title='Save File',
                                           initialfile='results.csv')
    LockPlayers()
    ExcludePlayers()
    exporter = CSVLineupExporter(optimizer.optimize(int(num_lineups.get())))
    exporter.export(results)
    DraftKingsRefromatting(results)
    save_button.state(['disabled'])
                     "dsSalary",
                     str(universe)]]
        players = list()
        for index, row in data.iterrows():
            player = Player(
                row["draftstarsID"],
                row['playerName'].split(" ")[0],
                row['playerName'].split(" ")[1],
                [row['draftstarsPosition']] if str(row['draftstarsPosition2']) == "nan" else [row['draftstarsPosition'],
                                                                                              row['draftstarsPosition2']],
                row["team"],
                row["dsSalary"],
                row[str(universe)]
            )
            players.append(player)
        return players

    @staticmethod
    def _import_data(filename):
        data = pd.read_csv(filename)
        return data


if __name__ == "__main__":
    generator = GenerateDraftstarsLineups()
    lineups = generator.process()
    lineup_generator = chain.from_iterable(lineups)
    exporter = CSVLineupExporter(lineup_generator)
    exporter.export("universeLineups.csv")
    print("CSV exported")
Ejemplo n.º 5
0
    SITE = Site.DRAFTKINGS
elif platform == 'draftkings-showdown':
    SITE = Site.DRAFTKINGS_CAPTAIN_MODE
elif platform == 'draftkings-tiers':
    SITE = Site.DRAFTKINGS_TIERS
elif platform == 'fanduel':
    SITE = Site.FANDUEL
# Sport
if sport == 'nfl':
    SPORT = Sport.FOOTBALL
elif sport == 'nba':
    SPORT = Sport.BASKETBALL

# make optimizer
# class CustomPuLPSolver(PuLPSolver):
#     LP_SOLVER = PULP_CBC_CMD(threads=8, options=['preprocess off'], msg=False)
#     LP_SOLVER = PULP_CHOCO_CMD()

# define optimizer
# optimizer = get_optimizer(site = SITE, sport = SPORT, solver=CustomPuLPSolver)
optimizer = get_optimizer(site=SITE, sport=SPORT)
optimizer.load_players_from_csv(input_string)
optimizer.set_max_repeating_players(int(maxrepplyr))

# export
exporter = CSVLineupExporter(
    optimizer.optimize(n=int(nlineups), max_exposure=float(maxexp)))
output_string = str(
    input_string[:input_string.rfind('/') + 1]) + 'optimized.csv'
exporter.export(output_string)
Ejemplo n.º 6
0
from pydfs_lineup_optimizer import get_optimizer, Site, Sport, CSVLineupExporter
import pandas

week = 'week4'
tournament = 'thur-mon'
csv_player_path = "/home/pete/Documents/dk_player_exports/WEEK/TOURNAMENT/DKSalaries_ffa.csv"
lineups_file = "/home/pete/Documents/dk_lineups/WEEK/TOURNAMENT/results.csv"

csv_player_path = csv_player_path.replace("WEEK", week).replace(
    "TOURNAMENT", tournament)
lineups_file = lineups_file.replace("WEEK",
                                    week).replace("TOURNAMENT", tournament)

optimizer = get_optimizer(Site.DRAFTKINGS, Sport.FOOTBALL)
optimizer.load_players_from_csv(csv_player_path)
number_of_lineups = 20
for lineup in optimizer.optimize(number_of_lineups):
    print(lineup)
#    print(lineup.players)
#    print(lineup.fantasy_points_projection)
#    print(lineup.salary_costs)

exporter = CSVLineupExporter(optimizer.optimize(number_of_lineups))
exporter.export(lineups_file)
# TODO: reformat the headers to match the approriate upload order for Draft Kings (QB, RB, RB, WR, WR, WR, TE, FLEX, DST)
Ejemplo n.º 7
0
optimizer = get_optimizer(Site.DRAFTKINGS_CAPTAIN_MODE, Sport.FOOTBALL)
optimizer.load_players_from_csv("DKSalaries1pmshowdown.csv")
#optimizer.add_stack(TeamStack(3))
#optimizer.add_stack(TeamStack(3, for_positions=['QB', 'WR']))
#optimizer.add_stack(PositionsStack(['QB', 'WR', 'WR']))
#optimizer.force_positions_for_opposing_team(('QB', 'WR'))
#optimizer.restrict_positions_for_same_team(('RB', 'RB'))
#optimizer.restrict_positions_for_opposing_team(['QB'], ['DST'])
optimizer.set_deviation(0.05, 0.3)
optimizer.set_max_repeating_players(5)
for player in optimizer.players:
    if player.fppg < 1:
        optimizer.remove_player(player)
#mekale = optimizer.get_player_by_name('Phillip Walker')
#optimizer.add_player_to_lineup(mekale)

#dc_wrs = []
#for name in ['Eli Rogers', 'Rashad Ross', 'Deandre Thompkins', 'Malachi Dupre']:
#    for p in optimizer.find_players(name):
#        dc_wrs.append(p)
#group = PlayersGroup(dc_wrs, min_from_group=1)
#optimizer.add_stack(Stack([cardale, group]))
optimizer.restrict_positions_for_opposing_team(['K'], ['K'])

exporter = CSVLineupExporter(
    optimizer.optimize(LINES, randomness=True, generate_exposures=True))
exporter.export('result1pm.csv')
optimizer.player_exposures.write_exposures_csv(total_lineups=LINES,
                                               csv_filename='exposures1pm.csv')
Ejemplo n.º 8
0
            player_include[-1 + (i % (1 + len(player_include)))]
        )  # find player with specified name in your optimizer
        #second_player = optimizer.get_player_by_id('12864605')  # find player with player id
        optimizer.add_player_to_lineup(player)  # lock this player in lineup
        #optimizer.add_player_to_lineup(second_player)
    if (math.floor(i / (1 + len(player_include))) > 0):
        player = optimizer.get_player_by_name(
            player_exclude[math.floor(-1 + (i / (1 + len(player_include))))])
        optimizer.remove_player(player)
        #optimizer.restore_player(player)

    if i == 0:
        exporter = CSVLineupExporter(optimizer.optimize(lineups))
    else:
        exporter = JohnCSVLineupExporter(optimizer.optimize(lineups))
    exporter.export(resultlocation)

#%%
for lineup in optimizer.optimize(n=1):
    print(lineup)
    print(lineup.players)  # list of players
    print(lineup.fantasy_points_projection)
    print(lineup.salary_costs)
#%%
#put in right format
from pydfs_lineup_optimizer import get_optimizer, Site, Sport, CSVLineupExporter
import pandas
import math
import csv

filelocation = r"C:\Users\admin\Downloads\DKSalaries_pga.csv"
Ejemplo n.º 9
0
def create_optimizer(request):
    if request.method == 'POST':
        form = OptimizerForm(request.POST)
        form2 = SlateForm(request.POST)
        if form2.is_valid() and 'change_slate' in request.POST:
            slate = form2.cleaned_data['slate']
            form = OptimizerForm()
            form2 = SlateForm(initial={'slate': slate})
            df = get_daily_roster(
                Path(
                    '//home/ubuntu/Fantasy-Fire/website/optimizer/prediction.csv'
                ))
            # df = create_predictions(df)
            df = create_predictions(
                df,
                slate=Path(
                    '//home/ubuntu/Fantasy-Fire/website/optimizer/Slates/' +
                    slate + '.csv'))
            df['Min Exposure'] = 0
            df['Max Exposure'] = 1
            df['Value'] = round(df['Predicted_FP'] / (df['Salary'] / 1000), 2)
            df.insert(0, "Include", '', True)
            for ind in df.index:
                df['Predicted_FP'][
                    ind] = "<input type='number' step='any' form='optimizer' name='fantasy_points_" + str(
                        ind) + "' value=" + str(
                            round(df['Predicted_FP'][ind],
                                  2)) + " id='id_predicted_fp'>"
                # df['Predicted FP'] = df['Predicted FP'].apply(lambda x: round(float(x), 2))
                # df['Predicted FP'] = df['Predicted FP'].apply(
                #     lambda x: "<input type='text' form='optimizer' name='fantasy_points_" + df['Name'] + "' value=" + str(
                #         x) + " id='id_predicted_fp'>")
                df['Min Exposure'][
                    ind] = "<input type='number' step='any' name='min_exposure_" + str(
                        ind) + "' value=" + str(0) + ">"
                df['Max Exposure'][
                    ind] = "<input type='number' step='any' name='max_exposure_" + str(
                        ind) + "' value=" + str(1) + ">"
                df['Include'][
                    ind] = "<input type='checkbox' id='child' name='include_" + str(
                        ind) + "' checked>"
            df = df[[
                'Include', 'Name', 'ID', 'Roster Position', 'Salary',
                'TeamAbbrev', 'Opp', 'Predicted_FP', 'Min Exposure',
                'Max Exposure', 'Value'
            ]]
            df.rename(columns={
                'Include':
                "<input type='checkbox' id='parent' onclick='checkAll()' checked>"
            },
                      inplace=True)
            html_table = df.to_html(
                index=False,
                justify='left',
                escape=False,
                table_id='slateData',
                classes=[
                    'table w3-table-all table-bordered table-striped table-hover table-responsive table-sm searchable sortable tablesorter tablesorter-default, container-fluid'
                ])
            return render(
                request, 'optimizer/optimizer.html', {
                    'form': form,
                    'player_table': html_table,
                    'form2': form2,
                    'slate': slate
                })
        if form.is_valid():
            slate = form2.cleaned_data['slate']
            min_salary = form.cleaned_data['min_salary']
            max_exposure = form.cleaned_data['max_exposure']
            no_lineups = form.cleaned_data['no_lineups']
            deviation = form.cleaned_data['deviation']
            generation_type = form.cleaned_data['generation_type']
            with_replacement = form.cleaned_data['with_replacement']

            if "Showdown" in slate:
                optimizer = get_optimizer(Site.DRAFTKINGS_CAPTAIN_MODE,
                                          Sport.BASKETBALL)
            else:
                optimizer = get_optimizer(Site.DRAFTKINGS, Sport.BASKETBALL)

            df = pd.read_csv(
                Path("//home/ubuntu/Fantasy-Fire/website/optimizer/Slates/" +
                     slate + ".csv"))
            df2 = pd.read_csv(
                Path(
                    r"//home/ubuntu/Fantasy-Fire/website/optimizer/prediction.csv"
                ))
            result = df.merge(df2, left_on='Name', right_on='name', how='left')
            # result = result.drop(
            #     columns=['AvgPointsPerGame'])
            result = result.fillna(0)
            includes = []
            fantasy_points = []
            min_exposures = []
            max_exposures = []
            deviations = []
            for key, value in request.POST.items():
                if 'include' in key:
                    includes.append(key)
                elif 'fantasy_points' in key:
                    fantasy_points.append(value)
                elif 'min_exposure' in key:
                    min_exposures.append(value)
                elif 'max_exposure' in key:
                    max_exposures.append(value)
                elif 'deviation' in key:
                    deviations.append(value)
            result['Min Exposure'] = 0
            result['Max Exposure'] = 1
            for ind in result.index:
                result['AvgPointsPerGame'][ind] = fantasy_points[ind]
                if int(max_exposure) != int(max_exposures[ind]) and int(
                        max_exposures[ind]) > 1:
                    result['Max Exposure'][ind] = int(max_exposures[ind]) / 100
                result['Min Exposure'][ind] = int(min_exposures[ind]) / 100
            # result = result.rename(columns={'max_exposure': 'Max Exposure', 'min_exposure': 'Min Exposure'})
            result.to_csv(
                Path(
                    "//home/ubuntu/Fantasy-Fire/website/optimizer/Predictions.csv"
                ))
            optimizer.load_players_from_csv(
                Path(
                    '//home/ubuntu/Fantasy-Fire/website/optimizer/Predictions.csv'
                ))
            optimizer.set_deviation(0, int(deviation) / 100)
            optimizer.set_min_salary_cap(min_salary)
            for player in optimizer.players:
                id = player.id
                playa = optimizer.get_player_by_id(id)
                optimizer.remove_player(playa)
            for i in includes:
                id = str(result['ID'][int(i[i.find('_') + 1:])])
                player = optimizer.get_player_by_id(id)
                optimizer.restore_player(player)
            exporter = CSVLineupExporter(
                optimizer.optimize(no_lineups,
                                   randomness=generation_type,
                                   with_replacement=with_replacement,
                                   max_exposure=max_exposure / 100))
            exporter.export(
                Path('//home/ubuntu/Fantasy-Fire/website/optimizer/lineups.csv'
                     ))

            with open(
                    '//home/ubuntu/Fantasy-Fire/website/optimizer/lineups.csv'
            ) as myfile:
                response = HttpResponse(myfile, content_type='text/csv')
                response[
                    'Content-Disposition'] = 'attachment; filename=lineups.csv'
                return response

    else:
        form = OptimizerForm()
        form2 = SlateForm(initial={'slate': 'Main_Slate'})
        df = get_daily_roster(
            Path(
                '//home/ubuntu/Fantasy-Fire/website/optimizer/prediction.csv'))
        # df = create_predictions(df)
        df = create_predictions(
            df,
            slate=Path(
                '//home/ubuntu/Fantasy-Fire/website/optimizer/Slates/Main_Slate.csv'
            ))
        df['Min Exposure'] = 0
        df['Max Exposure'] = 1
        df['Value'] = round(df['Predicted_FP'] / (df['Salary'] / 1000), 2)
        df.insert(0, "Include", '', True)
        for ind in df.index:
            df['Predicted_FP'][
                ind] = "<input type='number' step='any' form='optimizer' name='fantasy_points_" + str(
                    ind) + "' value=" + str(round(
                        df['Predicted_FP'][ind], 2)) + " id='id_predicted_fp'>"
            # df['Predicted FP'] = df['Predicted FP'].apply(lambda x: round(float(x), 2))
            # df['Predicted FP'] = df['Predicted FP'].apply(
            #     lambda x: "<input type='text' form='optimizer' name='fantasy_points_" + df['Name'] + "' value=" + str(
            #         x) + " id='id_predicted_fp'>")
            df['Min Exposure'][
                ind] = "<input type='number' step='any' name='min_exposure_" + str(
                    ind) + "' value=" + str(0) + ">"
            df['Max Exposure'][
                ind] = "<input type='number' step='any' name='max_exposure_" + str(
                    ind) + "' value=" + str(1) + ">"
            df['Include'][
                ind] = "<input type='checkbox' id='child' name='include_" + str(
                    ind) + "' checked>"
        df = df[[
            'Include', 'Name', 'ID', 'Roster Position', 'Salary', 'TeamAbbrev',
            'Opp', 'Predicted_FP', 'Min Exposure', 'Max Exposure', 'Value'
        ]]
        df.rename(columns={
            'Include':
            "<input type='checkbox' id='parent' onclick='checkAll()' checked>"
        },
                  inplace=True)
        # df['Value'] = df['Predicted_FP'] / (df['Salary'] / 1000)
        html_table = df.to_html(
            index=False,
            justify='left',
            escape=False,
            table_id='slateData',
            classes=[
                'table w3-table-all table-bordered table-striped table-hover table-responsive table-sm searchable sortable tablesorter tablesorter-default, container-fluid'
            ])
        # 'table table-bordered table-striped'])
        return render(
            request, 'optimizer/optimizer.html', {
                'form': form,
                'player_table': html_table,
                'form2': form2,
                'slate': 'Main_Slate'
            })
Ejemplo n.º 10
0
#optimizer.force_positions_for_opposing_team(('QB', 'WR'))

#optimizer.add_stack(PositionsStack(['QB', 'WR']))
optimizer.restrict_positions_for_same_team(('RB', 'RB'))
optimizer.force_positions_for_opposing_team(('QB', 'WR'))
#optimizer.force_positions_for_opposing_team(('QB', 'WR'))

#optimizer.add_stack(TeamStack(2, for_positions=['QB', 'WR'], for_teams=['DAL', 'HOU', 'DC']))
optimizer.restrict_positions_for_opposing_team(['QB'], ['DST'])
optimizer.set_deviation(0.02, 0.35)
optimizer.set_max_repeating_players(5)
for player in optimizer.players:
    if player.fppg < 1:
        optimizer.remove_player(player)
    elif 'WR' in player.positions:
        player.min_deviation = 0.25
        player.max_deviation = 0.55
    elif 'QB' in player.positions:
        player.min_deviation = 0.15
        player.max_deviation = 0.35
#mekale = optimizer.get_player_by_name('Mekale McKay')
#optimizer.add_player_to_lineup(mekale)
exporter = CSVLineupExporter(
    optimizer.optimize(LINES, randomness=True, generate_exposures=True))
exporter.export('result.csv')
optimizer.player_exposures.write_exposures_csv(total_lineups=LINES)

#exporter = CSVLineupExporter(optimizer.optimize_lineups(lineups, generate_exposures=True))
#exporter.export('result.csv')
#optimizer.player_exposures.write_exposures_csv(total_lineups=LINES)
Ejemplo n.º 11
0
    # for lineup in optimizer.optimize(n=10, randomness=True):
    # optimizer.add_player_to_lineup(drummond)  # lock this player in lineup
    # optimizer.add_player_to_lineup(curry)  # lock this player in lineup
    # optimizer.add_player_to_lineup(gordon)
    # optimizer.add_player_to_lineup(robinson)
    # # optimizer.remove_player_from_lineup(player1)
    # optimizer.remove_player(burks)
    # optimizer.restore_player(player2)
    # player1.max_exposure = 0.5  # set max exposure
    # young.min_exposure = 0.3  # set min exposure
    # gordon.min_exposure = 0.6  # set min exposure
    # harden.min_exposure = 0.1
    # curry.min_exposure = 0.7
    # draymond.fppg = 100
    # chriss.min_exposure = 0.1
    # robinson.min_exposure = 0.3
    # reddish.fppg = 19
    # print(lineup)
    # print(lineup.players)  # list of players
    # print(lineup.fantasy_points_projection)
    # print(lineup.salary_costs)
    optimizer.set_deviation(0, 0.1)  # changing defaults of 0.06 and 0.12
    optimizer.set_min_salary_cap(49500)
    # optimizer.set_max_repeating_players(5) #restricts how many unique players each team must have
    # optimizer.set_team_stacking([3, 3]) #in this case, two teams must have at least 3 players present
    # optimizer.set_players_from_one_team({'GS': 2, 'LAC': 2})
    exporter = CSVLineupExporter(optimizer.optimize(300, randomness=True))
    exporter.export(
        r'C:\Users\Charlie\Documents\GitHub\Fantasy-Fire\website\optimizer\lineups.csv'
    )