Ejemplo n.º 1
0
def generate_dicom_scans(dst, num_scans=10, intercept=0, slope=1):
    spacing = (0.4 + 0.4 * np.random.rand(num_scans, 3) +
               np.array([1 + 0.5 * np.random.rand(), 0, 0]))
    origin = np.random.randint(-200, 200, (num_scans, 3))
    for i in range(num_scans):
        num_slices = np.random.randint(128, 169)
        scan_id = np.random.randint(2**16)
        scan_data = np.random.randint(0, 256, (num_slices, 128, 128))
        folder = os.path.join(dst,
                              hex(scan_id).replace('x', '').upper().zfill(8))

        if not os.path.exists(folder):
            os.makedirs(folder)

        for k in range(num_slices):
            slice_name = (hex(scan_id + k).replace('x', '').upper().zfill(8))
            filename = os.path.join(folder, slice_name)
            pixel_array = (scan_data[k, ...] - intercept) / slope
            locZ = float(origin[i, 0] + spacing[i, 0] * k)
            locY, locX = float(origin[i, 1]), float(origin[i, 2])

            file_meta = DicomDataset()
            file_meta.MediaStorageSOPClassUID = "Secondary Capture Image Storage"
            file_meta.MediaStorateSOPInstanceUID = (hex(scan_id).replace(
                'x', '').upper().zfill(8))

            file_meta.ImplementationClassUID = slice_name

            dataset = DicomFileDataset(filename, {},
                                       file_meta=file_meta,
                                       preamble=b"\0" * 128)

            dataset.PixelData = pixel_array.astype(np.uint16).tostring()
            dataset.RescaleSlope = slope
            dataset.RescaleIntercept = intercept

            dataset.ImagePositionPatient = MultiValue(
                type_constructor=float, iterable=[locZ, locY, locX])

            dataset.PixelSpacing = MultiValue(
                type_constructor=float,
                iterable=[float(spacing[i, 1]),
                          float(spacing[i, 2])])
            dataset.SliceThickness = float(spacing[i, 0])

            dataset.Modality = 'WSD'
            dataset.Columns = pixel_array.shape[0]
            dataset.Rows = pixel_array.shape[1]
            dataset.file_meta.TransferSyntaxUID = pydicom.uid.ImplicitVRLittleEndian
            dataset.PixelRepresentation = 1
            dataset.BitsAllocated = 16
            dataset.BitsStored = 16
            dataset.SamplesPerPixel = 1

            write_file(filename, dataset)
Ejemplo n.º 2
0
def dump_dicom(data, folder, spacing=(1, 1, 1),
               origin=(0, 0, 0), intercept=0, slope=1):
    """ Dump 3D scan in dicom format.

    Parameters
    ----------
    data : ndarray
        3D numpy array containing ct scan's data.
    folder : str
        folder where dicom files will be dumped.
    spacing : ArrayLike
        ndarray of shape (3,) that contains spacing along z, y, x axes.
    origin : ArrayLike
        ndarray of shape (3,) that contains origin for z, y, x axes.
    interception : float
        interception value. Default is 0.
    slope : float
        slope value. Default is 1.
    """
    spacing = np.array(spacing).reshape(-1)
    origin = np.array(origin).reshape(-1)

    if not os.path.exists(folder):
        os.makedirs(folder)

    num_slices = data.shape[0]
    scan_id = np.random.randint(2 ** 16)
    for i in range(num_slices):
        slice_name = (
            hex(scan_id + i)
            .replace('x', '')
            .upper()
            .zfill(8)
        )
        filename = os.path.join(folder, slice_name)
        pixel_array = (data[i, ...] - intercept) / slope
        locZ, locY, locX = (float(origin[0] + spacing[0] * i),
                            float(origin[1]), float(origin[2]))

        file_meta = Dataset()
        file_meta.MediaStorageSOPClassUID = 'Secondary Capture Image Storage'
        file_meta.MediaStorageSOPInstanceUID = (
            hex(scan_id)
            .replace('x', '')
            .upper()
            .zfill(8)
        )
        file_meta.ImplementationClassUID = slice_name

        dataset = FileDataset(filename, {},
                              file_meta=file_meta,
                              preamble=b"\0"*128)

        dataset.PixelData = pixel_array.astype(np.uint16).tostring()
        dataset.RescaleSlope = slope
        dataset.RescaleIntercept = intercept

        dataset.ImagePositionPatient = MultiValue(type_constructor=float,
                                                  iterable=[locZ, locY, locX])

        dataset.PixelSpacing = MultiValue(type_constructor=float,
                                          iterable=[float(spacing[1]),
                                                    float(spacing[2])])
        dataset.SliceThickness = float(spacing[0])

        dataset.Modality = 'WSD'
        dataset.Columns = pixel_array.shape[0]
        dataset.Rows = pixel_array.shape[1]
        dataset.file_meta.TransferSyntaxUID = pydicom.uid.ImplicitVRLittleEndian
        dataset.PixelRepresentation = 1
        dataset.BitsAllocated = 16
        dataset.BitsStored = 16
        dataset.SamplesPerPixel = 1

        write_file(filename, dataset)
Ejemplo n.º 3
0
    def createStructDS(self, planData, ImageInfoUIDs, setupPosition,
                       roiShiftVector):
        print("Creating Data structure")
        # create RS SOPInstanceUID
        structSOPInstanceUID = pydicom.uid.generate_uid()
        structSeriesInstanceUID = pydicom.uid.generate_uid()

        # get image header info from ImageSet_0.ImageInfo
        structFrameUID = ''
        structStudyInstanceUID = ''
        structSeriesUID = ''
        structClassUID = '1.2.840.10008.5.1.4.1.1.481.3'
        if "ImageInfoList" in ImageInfoUIDs:
            structFrameUID = ImageInfoUIDs.ImageInfoList[0].FrameUID
            structStudyInstanceUID = ImageInfoUIDs.ImageInfoList[
                0].StudyInstanceUID
            structSeriesUID = ImageInfoUIDs.ImageInfoList[0].SeriesUID
            # structClassUID = ImageInfoUIDs.ImageInfoList[0].ClassUID

        # Populate required values for file meta information
        file_meta = Dataset()
        # RT Structure Set Storage
        file_meta.MediaStorageSOPClassUID = structClassUID
        file_meta.MediaStorageSOPInstanceUID = structSOPInstanceUID
        structfilename = "RS." + structSOPInstanceUID + ".dcm"
        # this value remains static since implementation for creating file is the same
        file_meta.ImplementationClassUID = '1.2.826.0.1.3680043.8.498.75006884747854523615841001'
        # Create the FileDataset instance (initially no data elements, but file_meta supplied)
        ds = FileDataset(structfilename, {},
                         file_meta=file_meta,
                         preamble=b'\x00' * 128)
        # print(file_meta.preamble)

        # add info_data,basic patientinfo
        # [0008,0005] - [0008,0018]
        ds.SpecificCharacterSet = 'ISO_IR 100'
        ds.InstanceCreationDate = time.strftime("%Y%m%d")
        ds.InstanceCreationTime = time.strftime("%H%M%S")
        ds.SOPClassUID = structClassUID
        ds.SOPInstanceUID = structSOPInstanceUID
        ds.Modality = 'RTSTRUCT'
        ds.AccessionNumber = ""
        ds.Manufacturer = 'Pinnalce3'  # from sample dicom file, maybe should change?
        # not sure where to get information for this element can find this and read in from
        ds.StationName = "adacp3u7"
        # ds.ManufacturersModelName = 'Pinnacle3'
        ds = self.modifyPatientInfo(ds, planData)

        # [0008,1110]
        ds.ReferencedStudySequence = Sequence()
        ReferencedStudy1 = Dataset()
        ds.ReferencedStudySequence.append(ReferencedStudy1)
        # Study Component Management SOP Class (chosen from template)
        ds.ReferencedStudySequence[
            0].ReferencedSOPClassUID = '1.2.840.10008.3.1.2.3.2'
        ds.ReferencedStudySequence[
            0].ReferencedSOPInstanceUID = structStudyInstanceUID
        # ds.StudyInstanceUID = StudyInstanceUID
        print("Setting structure file study instance: " +
              str(structStudyInstanceUID))
        # [0020,000d]
        ds.StudyInstanceUID = structStudyInstanceUID
        # [0020,000e]
        ds.SeriesInstanceUID = structSeriesInstanceUID

        # [3006,0010]
        ds.ReferencedFrameOfReferenceSequence = Sequence()
        ReferencedFrameofReference1 = Dataset()
        ds.ReferencedFrameOfReferenceSequence.append(
            ReferencedFrameofReference1)
        ds.ReferencedFrameOfReferenceSequence[
            0].FrameofReferenceUID = structFrameUID
        # [3006,0012]
        ds.ReferencedFrameOfReferenceSequence[
            0].RTReferencedStudySequence = Sequence()
        RTReferencedStudy1 = Dataset()
        ds.ReferencedFrameOfReferenceSequence[
            0].RTReferencedStudySequence.append(RTReferencedStudy1)
        ds.ReferencedFrameOfReferenceSequence[0].RTReferencedStudySequence[
            0].ReferencedSOPClassUID = '1.2.840.10008.3.1.2.3.2'
        ds.ReferencedFrameOfReferenceSequence[0].RTReferencedStudySequence[
            0].ReferencedSOPInstanceUID = structStudyInstanceUID
        # ds.StudyInstanceUID = StudyInstanceUID
        # [3006,0014]
        ds.ReferencedFrameOfReferenceSequence[0].RTReferencedStudySequence[
            0].RTReferencedSeriesSequence = Sequence()
        RTReferencedSeries1 = Dataset()
        ds.ReferencedFrameOfReferenceSequence[0].RTReferencedStudySequence[
            0].RTReferencedSeriesSequence.append(RTReferencedSeries1)
        ds.ReferencedFrameOfReferenceSequence[0].RTReferencedStudySequence[
            0].RTReferencedSeriesSequence[
                0].SeriesInstanceUID = structSeriesUID

        # [3006,0016]
        ds.ReferencedFrameOfReferenceSequence[0].RTReferencedStudySequence[
            0].RTReferencedSeriesSequence[0].ContourImageSequence = Sequence()

        # [fffe,e000]
        for i, value in enumerate(ImageInfoUIDs.ImageInfoList, 1):
            exec("ContourImage%d = Dataset()" % i)
            exec(
                "ds.ReferencedFrameOfReferenceSequence[0].RTReferencedStudySequence[0].RTReferencedSeriesSequence[0].ContourImageSequence.append(ContourImage%d)"
                % i)
            ds.ReferencedFrameOfReferenceSequence[0].RTReferencedStudySequence[
                0].RTReferencedSeriesSequence[0].ContourImageSequence[
                    i - 1].ReferencedSOPClassUID = value.ClassUID
            ds.ReferencedFrameOfReferenceSequence[0].RTReferencedStudySequence[
                0].RTReferencedSeriesSequence[0].ContourImageSequence[
                    i - 1].ReferencedSOPInstanceUID = value.InstanceUID
            # exec("del ContourImage%d" % i)

        # [3006,0020]
        roiListData = planData.planROIsRawData.roiList
        ds.StructureSetROISequence = Sequence()
        for i, value in enumerate(roiListData, 1):
            exec("ROISet%d = Dataset()" % i)
            exec("ds.StructureSetROISequence.append(ROISet%d)" % i)
            ds.StructureSetROISequence[i - 1].ROIName = value.name
            ds.StructureSetROISequence[i - 1].ROINumber = i
            ds.StructureSetROISequence[
                i - 1].ReferencedFrameOfReferenceUID = structFrameUID
            if 'volume' in value:
                ds.StructureSetROISequence[i - 1].ROIVolume = value.volume
            ds.StructureSetROISequence[
                i - 1].ROIGenerationAlgorithm = value.roiinterpretedtype

        # [3006,0039]get each ROI
        ds.ROIContourSequence = Sequence()
        for i, value in enumerate(roiListData, 1):
            exec("ContourSequence%d = Dataset()" % i)
            exec("ds.ROIContourSequence.append(ContourSequence%d)" % i)
            ds.ROIContourSequence[i - 1].ROIDisplayColor = [0, 255, 0]
            ds.ROIContourSequence[i - 1].ReferencedROINumber = i

            # get all curves in current ROI
            ds.ROIContourSequence[i - 1].ContourSequence = Sequence()
            planROIsCurvesList = value.num_curve
            # get each ROI_Curvers
            for j, data in enumerate(planROIsCurvesList, 1):
                exec("CurvesPoint%d = Dataset()" % j)
                exec(
                    "ds.ROIContourSequence[i - 1].ContourSequence.append(CurvesPoint%d)"
                    % j)
                # [3006,0040]
                ds.ROIContourSequence[i - 1].ContourSequence[
                    j - 1].ContourImageSequence = Sequence()
                coutourImage1 = Dataset()
                ds.ROIContourSequence[i - 1].ContourSequence[
                    j - 1].ContourImageSequence.append(coutourImage1)
                ds.ROIContourSequence[i - 1].ContourSequence[
                    j - 1].ContourImageSequence[
                        0].ReferencedSOPClassUID = structClassUID
                ds.ROIContourSequence[i - 1].ContourSequence[
                    j - 1].ContourImageSequence[
                        0].ReferencedSOPInstanceUID = self.getCTInstanceUID(
                            data.Points[0], setupPosition, ImageInfoUIDs)

                # [3006,0042]
                ds.ROIContourSequence[i - 1].ContourSequence[
                    j - 1].ContourGeometricType = "CLOSED_PLANAR"
                ds.ROIContourSequence[i - 1].ContourSequence[
                    j - 1].NumberOfContourPoints = data.num_points
                # get each ROI_Curves_Points, using data.Points
                ds.ROIContourSequence[i - 1].ContourSequence[
                    j - 1].ContourData = self.getContourCurvePoints(
                        data.Points, setupPosition, roiShiftVector)

        # [3006,0080]
        ds.RTROIObservationsSequence = Sequence()
        for i, current_roi in enumerate(ds.StructureSetROISequence, 1):
            exec("Observation%d = Dataset()" % i)
            exec("ds.RTROIObservationsSequence.append(Observation%d)" % i)
            ds.RTROIObservationsSequence[
                i - 1].ObservationNumber = current_roi.ROINumber
            ds.RTROIObservationsSequence[
                i - 1].ReferencedROINumber = current_roi.ROINumber
            ds.RTROIObservationsSequence[i - 1].RTROIInterpretedType = 'ORGAN'
            ds.RTROIObservationsSequence[i - 1].ROIInterpreter = ""

        # find out where to get if its been approved or not
        ds.ApprovalStatus = 'UNAPPROVED'
        # Set the transfer syntax
        ds.is_little_endian = True
        ds.is_implicit_VR = True

        # # Create the FileDataset instance (initially no data elements, but file_meta supplied)
        # structds = FileDataset(structfilename, {},
        #                  file_meta=ds, preamble=b'\x00' * 128)

        # structfilepath=outputfolder + patientfolder + "/" + structfilename
        # structds.save_as("structfilepath")
        # print("Structure file being saved\n")
        ds.save_as(os.getenv('HOME') + '/PinnWork/' + structfilename)
        #
        # dcmds = pydicom.dcmread(ds)
        # print(dcmds)
        return ds
Ejemplo n.º 4
0
    def generate_common_dicom_dataset_series(self, slice_count: int,
                                             system: Modality) -> list:
        output_dataset = []
        slice_pos = 0
        slice_thickness = 0
        study_uid = generate_uid()
        series_uid = generate_uid()
        frame_of_ref_uid = generate_uid()
        date_ = datetime.now().date()
        age = timedelta(days=45 * 365)
        time_ = datetime.now().time()
        cols = 2
        rows = 2
        bytes_per_voxel = 2

        for i in range(0, slice_count):
            file_meta = Dataset()
            pixel_array = b"\0" * cols * rows * bytes_per_voxel
            file_meta.MediaStorageSOPClassUID = sop_classes[system][1]
            file_meta.MediaStorageSOPInstanceUID = generate_uid()
            file_meta.ImplementationClassUID = generate_uid()

            tmp_dataset = FileDataset('', {},
                                      file_meta=file_meta,
                                      preamble=pixel_array)
            tmp_dataset.file_meta.TransferSyntaxUID = "1.2.840.10008.1.2.1"
            tmp_dataset.SliceLocation = slice_pos + i * slice_thickness
            tmp_dataset.SliceThickness = slice_thickness
            tmp_dataset.WindowCenter = 1
            tmp_dataset.WindowWidth = 2
            tmp_dataset.AcquisitionNumber = 1
            tmp_dataset.InstanceNumber = i
            tmp_dataset.SeriesNumber = 1
            tmp_dataset.ImageOrientationPatient = [
                1.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000
            ]
            tmp_dataset.ImagePositionPatient = [
                0.0, 0.0, tmp_dataset.SliceLocation
            ]
            tmp_dataset.ImageType = ['ORIGINAL', 'PRIMARY', 'AXIAL']
            tmp_dataset.PixelSpacing = [1, 1]
            tmp_dataset.PatientName = 'John Doe'
            tmp_dataset.FrameOfReferenceUID = frame_of_ref_uid
            tmp_dataset.SOPClassUID = sop_classes[system][1]
            tmp_dataset.SOPInstanceUID = generate_uid()
            tmp_dataset.SeriesInstanceUID = series_uid
            tmp_dataset.StudyInstanceUID = study_uid
            tmp_dataset.BitsAllocated = bytes_per_voxel * 8
            tmp_dataset.BitsStored = bytes_per_voxel * 8
            tmp_dataset.HighBit = (bytes_per_voxel * 8 - 1)
            tmp_dataset.PixelRepresentation = 1
            tmp_dataset.Columns = cols
            tmp_dataset.Rows = rows
            tmp_dataset.SamplesPerPixel = 1
            tmp_dataset.AccessionNumber = '2'
            tmp_dataset.AcquisitionDate = date_
            tmp_dataset.AcquisitionTime = datetime.now().time()
            tmp_dataset.AdditionalPatientHistory = 'UTERINE CA PRE-OP EVAL'
            tmp_dataset.ContentDate = date_
            tmp_dataset.ContentTime = datetime.now().time()
            tmp_dataset.Manufacturer = 'Mnufacturer'
            tmp_dataset.ManufacturerModelName = 'Model'
            tmp_dataset.Modality = sop_classes[system][0]
            tmp_dataset.PatientAge = '064Y'
            tmp_dataset.PatientBirthDate = date_ - age
            tmp_dataset.PatientID = 'ID0001'
            tmp_dataset.PatientIdentityRemoved = 'YES'
            tmp_dataset.PatientPosition = 'FFS'
            tmp_dataset.PatientSex = 'F'
            tmp_dataset.PhotometricInterpretation = 'MONOCHROME2'
            tmp_dataset.PixelData = pixel_array
            tmp_dataset.PositionReferenceIndicator = 'XY'
            tmp_dataset.ProtocolName = 'some protocole'
            tmp_dataset.ReferringPhysicianName = ''
            tmp_dataset.SeriesDate = date_
            tmp_dataset.SeriesDescription = 'test series '
            tmp_dataset.SeriesTime = time_
            tmp_dataset.SoftwareVersions = '01'
            tmp_dataset.SpecificCharacterSet = 'ISO_IR 100'
            tmp_dataset.StudyDate = date_
            tmp_dataset.StudyDescription = 'test study'
            tmp_dataset.StudyID = ''
            if (system == Modality.CT):
                tmp_dataset.RescaleIntercept = 0
                tmp_dataset.RescaleSlope = 1
            tmp_dataset.StudyTime = time_
            output_dataset.append(tmp_dataset)
        return output_dataset