def test_random_source(self):
        source = RandomSource(distribution=RandomDistribution.kUniform,
                              num_outputs=2, sampling_interval_sec=0.01)
        self.assertEqual(source.get_output_port(0).size(), 2)

        builder = DiagramBuilder()
        # Note: There are no random inputs to add to the empty diagram, but it
        # confirms the API works.
        AddRandomInputs(sampling_interval_sec=0.01, builder=builder)
Ejemplo n.º 2
0
def ExponentialRandomSource(num_outputs, sampling_interval_sec):
    """Deprecated constructor that desugars to
    primitives.RandomSource(RandomDistribution.kExponential, **args, **kwargs).
    This constructor will be removed on 2019-10-01."""
    from pydrake.common import RandomDistribution
    from pydrake.common.deprecation import DrakeDeprecationWarning
    from pydrake.systems.primitives import RandomSource
    warnings.warn(_DEPRECATION_MESSAGE,
                  category=DrakeDeprecationWarning,
                  stacklevel=2)
    return RandomSource(distribution=RandomDistribution.kExponential,
                        num_outputs=num_outputs,
                        sampling_interval_sec=sampling_interval_sec)
    def __init__(self):
        #import pdb; pdb.set_trace()
        # Create a block diagram containing our system.
        builder = DiagramBuilder()

        # add the two decoupled plants (x(s)=u/s^2;  y(s)=u/s^2)
        plant_x = builder.AddSystem(DoubleIntegrator())
        plant_y = builder.AddSystem(DoubleIntegrator())
        plant_x.set_name("double_integrator_x")
        plant_y.set_name("double_integrator_y")

        # add the controller, lead compensator for now just to stablize it
        controller_x = builder.AddSystem(
            Controller(tau_num=2., tau_den=.2, k=1.))
        controller_y = builder.AddSystem(
            Controller(tau_num=2., tau_den=.2, k=1.))
        controller_x.set_name("controller_x")
        controller_y.set_name("controller_y")

        # the perception's "Beam" model with the four sources of noise
        x_meas_fb = builder.AddSystem(Adder(num_inputs=4, size=1))
        x_meas_fb.set_name("x_fb")
        y_meas_fb = builder.AddSystem(Adder(num_inputs=4, size=1))
        y_meas_fb.set_name("y_fb")
        y_perception = builder.AddSystem(Adder(num_inputs=2, size=1))
        y_perception.set_name("range_measurment_y")
        neg_y_meas = builder.AddSystem(Gain(k=-1., size=1))
        neg_y_meas.set_name("neg_y_meas")
        wall_position = builder.AddSystem(ConstantVectorSource([Y_wall]))

        p_hit   = builder.AddSystem(RandomSource(distribution=RandomDistribution.kGaussian, num_outputs=2,\
                   sampling_interval_sec=0.01))
        p_hit.set_name("GaussionNoise(0,1)")
        p_short = builder.AddSystem(RandomSource(distribution=RandomDistribution.kExponential, num_outputs=2,\
                   sampling_interval_sec=0.01))
        p_short.set_name("ExponentialNoise(1)")
        #p_max   = builder.AddSystem(RandomSource(distribution=RandomDistribution.kUniform, num_outputs=1,\
        #										 sampling_interval_sec=0.01))
        p_rand  = builder.AddSystem(RandomSource(distribution=RandomDistribution.kUniform, num_outputs=2,\
                   sampling_interval_sec=0.01))
        p_rand.set_name("UniformNoise(0,1)")
        #import pdb; pdb.set_trace()
        p_hit_Dx = builder.AddSystem(Demultiplexer(size=2))
        p_hit_Dx.set_name('Dmux1')
        p_short_Dx = builder.AddSystem(Demultiplexer(size=2))
        p_short_Dx.set_name('Dmux2')
        p_rand_Dx = builder.AddSystem(Demultiplexer(size=2))
        p_rand_Dx.set_name('Dmux3')
        normgain_x = builder.AddSystem(Gain(k=normal_coeff, size=1))
        normgain_x.set_name("Sigma_x")
        normgain_y = builder.AddSystem(Gain(k=normal_coeff, size=1))
        normgain_y.set_name("Sigma_y")
        expgain_x = builder.AddSystem(Gain(k=exp_coeff, size=1))
        expgain_x.set_name("Exp_x")
        expgain_y = builder.AddSystem(Gain(k=exp_coeff, size=1))
        expgain_y.set_name("Exp_y")
        randgain_x = builder.AddSystem(Gain(k=rand_coeff, size=1))
        randgain_x.set_name("Rand_x")
        randgain_y = builder.AddSystem(Gain(k=rand_coeff, size=1))
        randgain_y.set_name("Rand_y")
        #maxgain_x = builder.AddSystem(Adder(num_inputs=2, size=1))
        #maxgain_x.set_name("Max_x")
        #maxgain_y = builder.AddSystem(Adder(num_inputs=2, size=1))
        #maxgain_y.set_name("Max_y")

        # the summation to get the error (closing the loop)
        summ_x = builder.AddSystem(Adder(num_inputs=2, size=1))
        summ_y = builder.AddSystem(Adder(num_inputs=2, size=1))
        summ_x.set_name("summation_x")
        summ_y.set_name("summation_y")
        neg_x = builder.AddSystem(Gain(k=-1., size=1))
        neg_y = builder.AddSystem(Gain(k=-1., size=1))
        neg_uy = builder.AddSystem(Gain(k=-1., size=1))
        neg_x.set_name("neg_x")
        neg_y.set_name("neg_y")
        neg_uy.set_name("neg_uy")

        # wire up all the blocks (summation to the controller to the plant ...)
        builder.Connect(summ_x.get_output_port(0),
                        controller_x.get_input_port(0))  # e_x
        builder.Connect(summ_y.get_output_port(0),
                        controller_y.get_input_port(0))  # e_y

        builder.Connect(controller_x.get_output_port(0),
                        plant_x.get_input_port(0))  # u_x
        builder.Connect(
            controller_y.get_output_port(0),
            neg_uy.get_input_port(0))  # u_y (to deal with directions)
        builder.Connect(neg_uy.get_output_port(0),
                        plant_y.get_input_port(0))  # u_y

        builder.Connect(
            plant_x.get_output_port(0),
            x_meas_fb.get_input_port(0))  # perception, nominal state meas
        builder.Connect(wall_position.get_output_port(0),
                        y_perception.get_input_port(0))  # perception
        builder.Connect(plant_y.get_output_port(0),
                        neg_y_meas.get_input_port(0))  # perception
        builder.Connect(neg_y_meas.get_output_port(0),
                        y_perception.get_input_port(1))  # perception, z meas
        builder.Connect(
            y_perception.get_output_port(0),
            y_meas_fb.get_input_port(0))  # perception, nominal state meas

        builder.Connect(p_hit.get_output_port(0),
                        p_hit_Dx.get_input_port(0))  # demux the noise
        builder.Connect(p_hit_Dx.get_output_port(0),
                        normgain_x.get_input_port(0))  # normalize Normal dist
        builder.Connect(normgain_x.get_output_port(0),
                        x_meas_fb.get_input_port(1))  # Normal dist
        builder.Connect(p_hit_Dx.get_output_port(1),
                        normgain_y.get_input_port(0))  # normalize Normal dist
        builder.Connect(normgain_y.get_output_port(0),
                        y_meas_fb.get_input_port(1))  # Normal dist

        builder.Connect(p_short.get_output_port(0),
                        p_short_Dx.get_input_port(0))  # demux the noise
        builder.Connect(p_short_Dx.get_output_port(0),
                        expgain_x.get_input_port(0))  # normalize Exp dist
        builder.Connect(expgain_x.get_output_port(0),
                        x_meas_fb.get_input_port(2))  # Exp dist
        builder.Connect(p_short_Dx.get_output_port(1),
                        expgain_y.get_input_port(0))  # normalize Exp dist
        builder.Connect(expgain_y.get_output_port(0),
                        y_meas_fb.get_input_port(2))  # Exp dist

        #builder.Connect(p_max.get_output_port(0), x_meas_fb.get_input_port(3)) # Uniform dist
        #builder.Connect(p_max.get_output_port(0), y_meas_fb.get_input_port(3)) # Uniform dist

        builder.Connect(p_rand.get_output_port(0),
                        p_rand_Dx.get_input_port(0))  # normalize Uniform dist
        builder.Connect(p_rand_Dx.get_output_port(0),
                        randgain_x.get_input_port(0))  # normalize Uniform dist
        builder.Connect(randgain_x.get_output_port(0),
                        x_meas_fb.get_input_port(3))  # Uniform dist
        builder.Connect(p_rand_Dx.get_output_port(1),
                        randgain_y.get_input_port(0))  # normalize Uniform dist
        builder.Connect(randgain_y.get_output_port(0),
                        y_meas_fb.get_input_port(3))  # Uniform dist

        builder.Connect(x_meas_fb.get_output_port(0),
                        neg_x.get_input_port(0))  # -x
        builder.Connect(y_meas_fb.get_output_port(0),
                        neg_y.get_input_port(0))  # -y
        builder.Connect(neg_x.get_output_port(0),
                        summ_x.get_input_port(1))  # r-x
        builder.Connect(neg_y.get_output_port(0),
                        summ_y.get_input_port(1))  # r-y

        # Make the desired_state input of the controller, an input to the diagram.
        builder.ExportInput(summ_x.get_input_port(0))
        builder.ExportInput(summ_y.get_input_port(0))

        # get telemetry
        logger_x = LogOutput(plant_x.get_output_port(0), builder)
        logger_noise_x = LogOutput(x_meas_fb.get_output_port(0), builder)
        logger_y = LogOutput(plant_y.get_output_port(0), builder)
        logger_noise_y = LogOutput(y_meas_fb.get_output_port(0), builder)
        logger_x.set_name("logger_x_state")
        logger_y.set_name("logger_y_state")
        logger_noise_x.set_name("x_state_meas")
        logger_noise_y.set_name("y_meas")

        # compile the system
        diagram = builder.Build()
        diagram.set_name("diagram")

        # Create the simulator, and simulate for 10 seconds.
        simulator = Simulator(diagram)
        context = simulator.get_mutable_context()

        # First we extract the subsystem context for the plant
        plant_context_x = diagram.GetMutableSubsystemContext(plant_x, context)
        plant_context_y = diagram.GetMutableSubsystemContext(plant_y, context)
        # Then we can set the pendulum state, which is (x, y).
        z0 = X_0
        plant_context_x.get_mutable_continuous_state_vector().SetFromVector(z0)
        z0 = Y_0
        plant_context_y.get_mutable_continuous_state_vector().SetFromVector(z0)

        # The diagram has a single input port (port index 0), which is the desired_state.
        context.FixInputPort(
            0,
            [X_d])  # here we assume no perception, closing feedback on state X
        context.FixInputPort(
            1, [Z_d])  #Z_y, keep 3m away, basically we want to be at Y=0

        # run the simulation
        simulator.AdvanceTo(10)
        t = logger_x.sample_times()
        #import pdb; pdb.set_trace()
        # Plot the results.
        plt.figure()
        plot_system_graphviz(diagram, max_depth=2)

        plt.figure()
        plt.plot(t, logger_noise_x.data().transpose(), label='x_state_meas')
        plt.plot(t, logger_noise_y.data().transpose(), label='y_meas (z(y))')
        plt.plot(t, logger_x.data().transpose(), label='x_state')
        plt.plot(t, logger_y.data().transpose(), label='y_state')
        plt.xlabel('t')
        plt.ylabel('x(t),y(t)')
        plt.legend()
        plt.show(block=True)