def test_default(self):
     f = resource_stream('pydsm.delsig',
                         'tests/Data/test_simulateDSM_0.npz')
     d = np.load(f)['arr_0']
     f.close()
     # Take H as in H = synthesizeNTF(5, 32, 1)
     H = (np.array([
         0.99604531 + 0.08884669j, 0.99604531 - 0.08884669j,
         0.99860302 + 0.05283948j, 0.99860302 - 0.05283948j,
         1.00000000 + 0.j
     ]),
          np.array([
              0.80655696 + 0.11982271j, 0.80655696 - 0.11982271j,
              0.89807098 + 0.21981939j, 0.89807098 - 0.21981939j,
              0.77776708 + 0.j
          ]), 1)
     N = 8192
     f = 85
     u = 0.5 * np.sin(2. * np.pi * f / N * np.arange(N))
     v, d1, d2, d3 = simulateDSM(u, H)
     np.testing.assert_equal(v, d)
Ejemplo n.º 2
0
# Generate signals for time domain simulations
print("Generate input signals ", end=" ")
s1 = A1 * np.sin(2 * np.pi * f1 * tt / fphi)
print("* ", end="")
s2 = A2 * np.sin(2 * np.pi * f2 * tt / fphi)
print("* ", end="")
clk = 2 * (tt % 2) - 1
print("# ", end="")
s2r = s2 * clk
print("*")
dither_sigma = 1e-9  # Use a little dither
dither = np.random.randn(len(tt)) * dither_sigma

# Do the simulation
print("Simulating DSM", end=" ")
xx1 = simulateDSM(s1 + s2r + dither, ntf_dual_a)[0]
print("* ", end=""),
xx2 = xx1 * clk
print("*")

# Plot a fragment of the modulator output - same as Fig. 5c
plt.figure()
plt.plot(tt[100:150], xx1[100:150], linestyle='steps')
plt.xlabel(r'$n$', x=1.)
plt.ylabel(r'$x(nT)$', x=1.)
plt.ylim(-1.2, 1.2)
plt.suptitle('Fragment of modulator output - 1st signal')

# Reconstruct the signals
print("Applying a low pass filter")
yy1 = signal.lfilter(hz[0], hz[1], xx1)
Ejemplo n.º 3
0
# amplitudes
# Plot in paper obtained with
# c1=0 c2=0 c3=0.11111*np.sin(2*np.pi*fb*nn/fphi)*1E-3
#
# Constant component
c1 = 0.11111*0
# Slow component
c2 = 0*np.sin(2*np.pi*fa*nn/fphi)*1E-3
# Fast component
c3 = 0.11111*np.sin(2*np.pi*fb*nn/fphi)*1E-3
# dither
dither = 2.5E-6*randn(tmax+1)
sig = c1+c2+c3+dither

print("Simulating DSM")
ds1 = simulateDSM(sig, ntf1)[0]
ds2 = simulateDSM(sig, ntf2)[0]

ndt = tplot2-tplot0+1
dcval1 = np.sum(ds1[tplot0:tplot2])/ndt
dcval2 = np.sum(ds2[tplot0:tplot2])/ndt
print('Accuracy in the recovery of DC components')
print('recovered DC on-off', dcval1)
print('recovered DC low-dc-noise', dcval2)
print('original DC', np.sum(sig[tplot0:tplot2])/ndt)

print("Computing spectra")
NFFT = int(2**(np.ceil(np.log(nfft_periods*1./fa*fphi)/np.log(2))))
# This is a bit rough... there may be some residual power at the
# signal frequencies. To obtain a good plot make c1, c2, c3 very small
(psd1, freqs) = mlab.psd((ds1-sig)[tplot0:tplot2], Fs=2*fphi, NFFT=NFFT,
Ejemplo n.º 4
0
print("{:.4e}\t{:.4e}\t{:.4e}\t{:.4e}".format(n_pow_06_0043, n_pow_06_02,
                                              n_pow_06_06, n_pow_06_delsig))
print("{:2.2f}dB\t{:2.2f}dB\t{:2.2f}dB\t{:2.2f}dB".format(
    dbp(sig_pow_06 / n_pow_06_0043), dbp(sig_pow_06 / n_pow_06_02),
    dbp(sig_pow_06 / n_pow_06_06), dbp(sig_pow_06 / n_pow_06_delsig)))

# Repeating the tests in the time domain with the nonlinear modulator model
# and the linearized motor model
# Setting up DS simulation
tt = np.asarray(list(range(int(Tstop))))
uu = A * np.sin(2 * np.pi * fmot / fphi * tt)
dither = np.random.randn(len(uu)) * dither_sigma
uud = uu + dither
# Run the simulations
print("Simulating modulator with NTF optimized for sigma=0.043")
xx_opti0043 = simulateDSM(uud, ntf0043)[0]
print("Simulating modulator with NTF optimized for sigma=0.2")
xx_opti02 = simulateDSM(uud, ntf02)[0]
print("Simulating modulator with NTF optimized for sigma=0.6")
xx_opti06 = simulateDSM(uud, ntf06)[0]
print("Simulating modulator with benchmark NTF")
xx_delsig = simulateDSM(uud, delsig_ntf)[0]
print("Applying the filters from the linearized motor model")
print("Using the transfer function corresponding to sigma=0.043")
uud_filt0043 = sp.signal.lfilter(hz0043[0], hz0043[1], uud)
xx_opti_filt0043_0043 = sp.signal.lfilter(hz0043[0], hz0043[1], xx_opti0043)
xx_opti_filt0043_02 = sp.signal.lfilter(hz0043[0], hz0043[1], xx_opti02)
xx_opti_filt0043_06 = sp.signal.lfilter(hz0043[0], hz0043[1], xx_opti06)
xx_delsig_filt0043 = sp.signal.lfilter(hz0043[0], hz0043[1], xx_delsig)
print("Using the filter for sigma=0.2")
uud_filt02 = sp.signal.lfilter(hz02[0], hz02[1], uud)
Ejemplo n.º 5
0
    dbp(0.5*A1**2+0.5*A2**2)-dbp(noise_power_opti_1)))

# Start and stop time for DS simulation
Tstop = 100E3
Tstart = 40E3
dither_sigma = 1e-6

# Set up DSM simulation
tt = np.asarray(range(int(Tstop)))
uu = A1*np.sin(2*np.pi*fsig1/fphi*tt)+A2*np.sin(2*np.pi*fsig2/fphi*tt)
dither = np.random.randn(len(uu))*dither_sigma
uud = uu+dither

# Simulate the DSM
print("Simulating optimal NTF")
xx_opti = simulateDSM(uud, ntf_opti)[0]

print("Applying the reconstrution filter")
hz_ab = sp.signal.zpk2tf(*hz)
uu_filt = sp.signal.lfilter(hz_ab[0], hz_ab[1], uu)
xx_opti_filt = sp.signal.lfilter(hz_ab[0], hz_ab[1], xx_opti)

plt.figure()
plt.hold(True)
plt.plot(tt[Tstart:Tstart+4*OSR], uu_filt[Tstart:Tstart+4*OSR], 'b',
         label="Filtered input")
plt.plot(tt[Tstart:Tstart+4*OSR], xx_opti_filt[Tstart:Tstart+4*OSR], 'r',
         label="Filtered Optimal DSM output")
plt.legend(loc="best")
plt.suptitle("Portion of time domain behavior")
Ejemplo n.º 6
0
print("Test time:", len(tt), 'points')

# Generate signals for time domain simulations
print("Generate input signals ", end="")
s1 = A1*np.sin(2*np.pi*f1*tt/fphi)
print("* ", end="")
s2 = A2*np.sin(2*np.pi*f2*tt/fphi)
print("* ", end="")
clk = 2*(tt % 2)-1
print("*")
dither_sigma = 1e-9  # Use a little dither
dither = np.random.randn(len(tt))*dither_sigma

# Do the simulation
print("Simulating DSM ", end="")
xx1 = simulateDSM(s1+dither, ntf_a)[0]
print("* ", end="")
xx2 = simulateDSM(s2+dither, ntf_a)[0]
print("*")

# Plot a fragment of the modulator output - same as Fig. 5c
plt.figure()
plt.plot(tt[100:150], xx1[100:150], linestyle='steps')
plt.xlabel(r'$n$', x=1.)
plt.ylabel(r'$x(nT)$', x=1.)
plt.ylim(-1.2, 1.2)
plt.suptitle('Fragment of modulator output - 1st signal')

# Reconstruct the signals
print("Applying a low pass filter")
yy1 = signal.lfilter(hz[0], hz[1], xx1)
Ejemplo n.º 7
0
print("Test time:", len(tt), 'points')

# Generate signals for time domain simulations
print("Generate input signals ", end="")
s1 = A1 * np.sin(2 * np.pi * f1 * tt / fphi)
print("* ", end="")
s2 = A2 * np.sin(2 * np.pi * f2 * tt / fphi)
print("* ", end="")
clk = 2 * (tt % 2) - 1
print("*")
dither_sigma = 1e-9  # Use a little dither
dither = np.random.randn(len(tt)) * dither_sigma

# Do the simulation
print("Simulating DSM ", end="")
xx1 = simulateDSM(s1 + dither, ntf_a)[0]
print("* ", end="")
xx2 = simulateDSM(s2 + dither, ntf_a)[0]
print("*")

# Plot a fragment of the modulator output - same as Fig. 5c
plt.figure()
plt.plot(tt[100:150], xx1[100:150], linestyle='steps')
plt.xlabel(r'$n$', x=1.)
plt.ylabel(r'$x(nT)$', x=1.)
plt.ylim(-1.2, 1.2)
plt.suptitle('Fragment of modulator output - 1st signal')

# Reconstruct the signals
print("Applying a low pass filter")
yy1 = signal.lfilter(hz[0], hz[1], xx1)
Ejemplo n.º 8
0
dither_sigma = 0
# Use very little signals, otherwise it is troublesome to
# remove them completely to evaluate the quantization noise
A = 0.01
DT = 4 * fphi / fsig

# Setting up DS simulation
tt = np.asarray(list(range(int(Tstop))))
uu = A * np.sin(2 * np.pi * fsig / fphi * tt)
dither = np.random.randn(len(uu)) * dither_sigma
uud = uu + dither

# Simulating the DS
# Some of the commented bits are used to obtain the quantizazion noise pdf
print("Simulating optimal NTF")
xx_opti = simulateDSM(uud, opti_ntf)[0]
xx_ref = simulateDSM(uud, dunn_ntf)[0]

NFFT = 4096 * 32
# Possibly this can be improved by extracting the tone from the
# output to do the subtraction
(psd1, freqs) = mlab.psd((xx_opti - uu)[Tstart:Tstop],
                         Fs=fphi,
                         NFFT=NFFT,
                         noverlap=NFFT / 2,
                         scale_by_freq=True)
(psd2, reqs) = mlab.psd((xx_ref - uu)[Tstart:Tstop],
                        Fs=fphi,
                        NFFT=NFFT,
                        noverlap=NFFT / 2,
                        scale_by_freq=True)
Ejemplo n.º 9
0
    dbp(0.5*A**2)-dbp(noise_power_delsig_1)))

# Start and stop time for DS simulation
Tstop = 100E3
Tstart = 40E3
dither_sigma = 1e-6

# Set up DSM simulation
tt = np.asarray(range(int(Tstop)))
uu = A*np.sin(2*np.pi*fsig/fphi*tt)
dither = np.random.randn(len(uu))*dither_sigma
uud = uu+dither

# Simulate the DSM
print("Simulating optimal NTF")
xx_opti = simulateDSM(uud, ntf_opti)[0]
print("Simulating delsig NTF")
xx_delsig = simulateDSM(uud, ntf_delsig)[0]

print("Applying the output filter")
uu_filt = sp.signal.lfilter(hz[0], hz[1], uu)
xx_opti_filt = sp.signal.lfilter(hz[0], hz[1], xx_opti)
xx_delsig_filt = sp.signal.lfilter(hz[0], hz[1], xx_delsig)

plt.figure()
plt.plot(tt[Tstart:Tstart+4*OSR], uu_filt[Tstart:Tstart+4*OSR], 'b',
         label="Filtered input")
plt.plot(tt[Tstart:Tstart+4*OSR], xx_opti_filt[Tstart:Tstart+4*OSR], 'r',
         label="Filtered Optimal DSM output")
plt.plot(tt[Tstart:Tstart+4*OSR], xx_delsig_filt[Tstart:Tstart+4*OSR], 'g',
         label="Filtered Delsig DSM output")
Ejemplo n.º 10
0
    dbp(0.5 * A**2) - dbp(noise_power_delsig_1)))

# Start and stop time for DS simulation
Tstop = 100E3
Tstart = 40E3
dither_sigma = 1e-6

# Set up DSM simulation
tt = np.asarray(list(range(int(Tstop))))
uu = A * np.sin(2 * np.pi * fsig / fphi * tt)
dither = np.random.randn(len(uu)) * dither_sigma
uud = uu + dither

# Simulate the DSM
print("Simulating optimal NTF")
xx_opti = simulateDSM(uud, ntf_opti)[0]
print("Simulating delsig NTF")
xx_delsig = simulateDSM(uud, ntf_delsig)[0]

print("Applying the output filter")
uu_filt = sp.signal.lfilter(hz[0], hz[1], uu)
xx_opti_filt = sp.signal.lfilter(hz[0], hz[1], xx_opti)
xx_delsig_filt = sp.signal.lfilter(hz[0], hz[1], xx_delsig)

plt.figure()
plt.plot(tt[Tstart:Tstart + 4 * OSR],
         uu_filt[Tstart:Tstart + 4 * OSR],
         'b',
         label="Filtered input")
plt.plot(tt[Tstart:Tstart + 4 * OSR],
         xx_opti_filt[Tstart:Tstart + 4 * OSR],
Ejemplo n.º 11
0
# Generate signals for time domain simulations
print("Generate input signals ", end=" ")
s1 = A1*np.sin(2*np.pi*f1*tt/fphi)
print("* ", end="")
s2 = A2*np.sin(2*np.pi*f2*tt/fphi)
print("* ", end="")
clk = 2*(tt % 2)-1
print("# ", end="")
s2r = s2*clk
print("*")
dither_sigma = 1e-9  # Use a little dither
dither = np.random.randn(len(tt))*dither_sigma

# Do the simulation
print("Simulating DSM", end=" ")
xx1 = simulateDSM(s1+s2r+dither, ntf_dual_a)[0]
print("* ", end=""),
xx2 = xx1*clk
print("*")

# Plot a fragment of the modulator output - same as Fig. 5c
plt.figure()
plt.plot(tt[100:150], xx1[100:150], linestyle='steps')
plt.xlabel(r'$n$', x=1.)
plt.ylabel(r'$x(nT)$', x=1.)
plt.ylim(-1.2, 1.2)
plt.suptitle('Fragment of modulator output - 1st signal')

# Reconstruct the signals
print("Applying a low pass filter")
yy1 = signal.lfilter(hz[0], hz[1], xx1)
Ejemplo n.º 12
0
# amplitudes
# Plot in paper obtained with
# c1=0 c2=0 c3=0.11111*np.sin(2*np.pi*fb*nn/fphi)*1E-3
#
# Constant component
c1 = 0.11111 * 0
# Slow component
c2 = 0 * np.sin(2 * np.pi * fa * nn / fphi) * 1E-3
# Fast component
c3 = 0.11111 * np.sin(2 * np.pi * fb * nn / fphi) * 1E-3
# dither
dither = 2.5E-6 * randn(tmax + 1)
sig = c1 + c2 + c3 + dither

print("Simulating DSM")
ds1 = simulateDSM(sig, ntf1)[0]
ds2 = simulateDSM(sig, ntf2)[0]

ndt = tplot2 - tplot0 + 1
dcval1 = np.sum(ds1[tplot0:tplot2]) / ndt
dcval2 = np.sum(ds2[tplot0:tplot2]) / ndt
print('Accuracy in the recovery of DC components')
print('recovered DC on-off', dcval1)
print('recovered DC low-dc-noise', dcval2)
print('original DC', np.sum(sig[tplot0:tplot2]) / ndt)

print("Computing spectra")
NFFT = int(2**(np.ceil(np.log(nfft_periods * 1. / fa * fphi) / np.log(2))))
# This is a bit rough... there may be some residual power at the
# signal frequencies. To obtain a good plot make c1, c2, c3 very small
(psd1, freqs) = mlab.psd((ds1 - sig)[tplot0:tplot2],
Ejemplo n.º 13
0
print("{:.4e}\t{:.4e}\t{:.4e}\t{:.4e}".format(
    n_pow_06_0043, n_pow_06_02, n_pow_06_06, n_pow_06_delsig))
print("{:2.2f}dB\t{:2.2f}dB\t{:2.2f}dB\t{:2.2f}dB".format(
    dbp(sig_pow_06/n_pow_06_0043), dbp(sig_pow_06/n_pow_06_02),
    dbp(sig_pow_06/n_pow_06_06), dbp(sig_pow_06/n_pow_06_delsig)))

# Repeating the tests in the time domain with the nonlinear modulator model
# and the linearized motor model
# Setting up DS simulation
tt = np.asarray(range(int(Tstop)))
uu = A*np.sin(2*np.pi*fmot/fphi*tt)
dither = np.random.randn(len(uu))*dither_sigma
uud = uu+dither
# Run the simulations
print("Simulating modulator with NTF optimized for sigma=0.043")
xx_opti0043 = simulateDSM(uud, ntf0043)[0]
print("Simulating modulator with NTF optimized for sigma=0.2")
xx_opti02 = simulateDSM(uud, ntf02)[0]
print("Simulating modulator with NTF optimized for sigma=0.6")
xx_opti06 = simulateDSM(uud, ntf06)[0]
print("Simulating modulator with benchmark NTF")
xx_delsig = simulateDSM(uud, delsig_ntf)[0]
print("Applying the filters from the linearized motor model")
print("Using the transfer function corresponding to sigma=0.043")
uud_filt0043 = sp.signal.lfilter(hz0043[0], hz0043[1], uud)
xx_opti_filt0043_0043 = sp.signal.lfilter(hz0043[0], hz0043[1], xx_opti0043)
xx_opti_filt0043_02 = sp.signal.lfilter(hz0043[0], hz0043[1], xx_opti02)
xx_opti_filt0043_06 = sp.signal.lfilter(hz0043[0], hz0043[1], xx_opti06)
xx_delsig_filt0043 = sp.signal.lfilter(hz0043[0], hz0043[1], xx_delsig)
print("Using the filter for sigma=0.2")
uud_filt02 = sp.signal.lfilter(hz02[0], hz02[1], uud)
Ejemplo n.º 14
0
    dbp(0.5*A1**2+0.5*A2**2)-dbp(noise_power_opti_1)))

# Start and stop time for DS simulation
Tstop = 100E3
Tstart = 40E3
dither_sigma = 1e-6

# Set up DSM simulation
tt = np.asarray(list(range(int(Tstop))))
uu = A1*np.sin(2*np.pi*fsig1/fphi*tt)+A2*np.sin(2*np.pi*fsig2/fphi*tt)
dither = np.random.randn(len(uu))*dither_sigma
uud = uu+dither

# Simulate the DSM
print("Simulating optimal NTF")
xx_opti = simulateDSM(uud, ntf_opti)[0]

print("Applying the reconstrution filter")
hz_ab = sp.signal.zpk2tf(*hz)
uu_filt = sp.signal.lfilter(hz_ab[0], hz_ab[1], uu)
xx_opti_filt = sp.signal.lfilter(hz_ab[0], hz_ab[1], xx_opti)

plt.figure()
plt.hold(True)
plt.plot(tt[Tstart:Tstart+4*OSR], uu_filt[Tstart:Tstart+4*OSR], 'b',
         label="Filtered input")
plt.plot(tt[Tstart:Tstart+4*OSR], xx_opti_filt[Tstart:Tstart+4*OSR], 'r',
         label="Filtered Optimal DSM output")
plt.legend(loc="best")
plt.suptitle("Portion of time domain behavior")