Ejemplo n.º 1
0
def calculatePositions(tree,
                       branchIDToFiloTypeMap=None,
                       filoDist=10,
                       branchDrawnLeft=None):
    if branchDrawnLeft is None:
        branchDrawnLeft = {}  # No directions stored yet.

    # First calculate branch types if it hasn't been done yet:
    if branchIDToFiloTypeMap is None:
        ftArray, _, _, _, _, _ = addedSubtractedTransitioned([tree],
                                                             filoDist=filoDist)
        filoTypes = ftArray[0]
        branchIDList = util.sortedBranchIDList([tree])
        branchIDToFiloTypeMap = {}
        for i in range(len(branchIDList)):
            branchIDToFiloTypeMap[branchIDList[i]] = filoTypes[i]

    # Next, simplify into a mapping of whether each branch is a filo (horizontal) or not (vertical)
    branchIsFiloMap = {}
    for id, filoType in branchIDToFiloTypeMap.items():
        branchIsFiloMap[id] = (filoType == FiloType.INTERSTITIAL
                               or filoType == FiloType.TERMINAL)

    # Finally, calculate both X and Y positions
    pointX = _calculatePointX(tree, branchIsFiloMap, branchDrawnLeft, filoDist)
    pointY = _calculatePointY(tree, branchIsFiloMap)
    return pointX, pointY
Ejemplo n.º 2
0
    def __init__(self, parent, selectedTree, treeModels, is2D, filePaths, opt, sizeFactor=10, *args, **kwargs):
        self.firstTree = max(0, min(selectedTree - 1, len(treeModels) - MAX_TREE_COUNT))
        self.treeModels = treeModels
        self.filePaths = filePaths
        self.options = opt
        self.dendrogram = is2D
        np.set_printoptions(precision=3)

        self.branchIDList = util.sortedBranchIDList(self.treeModels)
        self.filoTypes, self.added, self.subtracted, self.transitioned, _, _ = addedSubtractedTransitioned(
            self.treeModels,
            excludeAxon=opt.excludeAxon, excludeBasal=opt.excludeBasal,
            terminalDist=opt.terminalDist, filoDist=opt.filoDist
        )
        mot, self.filoLengths = motility(
            self.treeModels,
            excludeAxon=opt.excludeAxon, excludeBasal=opt.excludeBasal, includeAS=opt.includeAS,
            terminalDist=opt.terminalDist, filoDist=opt.filoDist
        )
        np.set_printoptions()
        self.motility = mot['raw']
        self.sizeFactor = sizeFactor

        self.dendrogramX, self.dendrogramY = calculateAllPositions(
            self.treeModels, self.filoTypes, self.branchIDList, filoDist=opt.filoDist
        )

        nPlots = min(len(treeModels), MAX_TREE_COUNT)
        super(Motility3DCanvas, self).__init__(*args, in3D=(not self.dendrogram), subplots=nPlots, **kwargs)
        self.fig.canvas.mpl_connect('motion_notify_event', self.handleMove)
        self.fig.subplots_adjust(top=0.95, bottom=0.05, right=0.95, left=0.05, wspace=0.05, hspace=0.05)
Ejemplo n.º 3
0
def runFiloTipCluster(path):
    fullState = files.loadState(usePathOrPick(path))
    # Process each tree in order:
    for treeIdx, tree in enumerate(fullState.trees):
        branchIDList = util.sortedBranchIDList([tree])

        # Find the types of each branch:
        filoTypes, _, _, _, _, _ = addedSubtractedTransitioned([tree])

        # Keep only interstitial filo...
        interstitialFiloIDs = []
        for branchID, filoType in zip(branchIDList, filoTypes[0]):
            if filoType == FiloType.INTERSTITIAL:
                interstitialFiloIDs.append(branchID)
        print("%d Interstitial Filos detected" % (len(interstitialFiloIDs)))

        # and map to the points at their tip:
        tipPoints = []
        for branch in tree.branches:
            if branch.id in interstitialFiloIDs:
                if len(branch.points) > 0:
                    tipPoints.append(branch.points[-1])
        fig = plt.figure()
        fig.suptitle("Interstitial Filo Tip clustering for [%d]" %
                     (treeIdx + 1))
        fig.subplots_adjust(left=0.02,
                            bottom=0.07,
                            right=0.98,
                            top=0.9,
                            wspace=0.05,
                            hspace=0.2)

        # 3D plot showing where the filo tips are on the branches.
        ax3D = fig.add_subplot(121, projection='3d')
        ax3D.set_title("3D positions")
        for branch in tree.branches:
            if branch.parentPoint is not None:
                points = [branch.parentPoint] + branch.points
                ax3D.plot(*tree.worldCoordPoints(points),
                          c=(0.5, 0.5, 0.5, 0.1))
        ax3D.scatter(*tree.worldCoordPoints(tipPoints))

        # 2D plot comparing spatial distance to tree distance
        sDs, tDs = [], []
        ax2D = fig.add_subplot(122)
        ax2D.set_title("Spatial distance vs Tree Distance")
        ax2D.set_xlabel("Spatial Distance (uM)")
        ax2D.set_ylabel("Tree Distance (uM)")
        for i, p1 in enumerate(tipPoints):
            for p2 in tipPoints[i + 1:]:
                spatialDist, treeDist = tree.spatialAndTreeDist(p1, p2)
                sDs.append(spatialDist)
                tDs.append(treeDist)
        if len(sDs) > 0 and len(tDs) > 0:
            ax2D.scatter(sDs, tDs)
            ax2D.plot([0, np.max(sDs)], [0, np.max(sDs)],
                      '--',
                      c=(0.5, 0.5, 0.5, 0.7))
        plt.show()
Ejemplo n.º 4
0
def testImportNoChange(path='data/localFirst.dyn.gz'):
    print("Testing no motility changes after nodes copied...")
    fullState = files.loadState(path)
    assert len(fullState.trees) == 1

    treeA = fullState.trees[0]

    # NOTE: old trees sometimes have empty branches:
    emptyBranches = [b for b in treeA.branches if len(b.points) == 0]
    for emptyBranch in emptyBranches:
        treeA.removeBranch(emptyBranch)

    treeB = Tree()
    treeB.clearAndCopyFrom(treeA, fullState)
    treeB._parentState = treeA._parentState
    # Copy branch and point IDs:
    for i in range(len(treeA.branches)):
        treeB.branches[i].id = treeA.branches[i].id
        for j in range(len(treeA.branches[i].points)):
            treeB.branches[i].points[j].id = treeA.branches[i].points[j].id
    trees = [treeA, treeB]

    print("\nResults:\n---------")

    # TDBL the same for identical trees
    allTDBL = [
        TDBL(tree,
             excludeAxon=True,
             excludeBasal=False,
             includeFilo=False,
             filoDist=5) for tree in trees
    ]
    # print (allTDBL)
    assert allTDBL[0] == allTDBL[1]
    print("🙌 TDBL match!")

    filoTypes, added, subtracted, transitioned, masterChanged, masterNodes = \
        addedSubtractedTransitioned(trees, excludeAxon=True, excludeBasal=False, terminalDist=5, filoDist=5)

    assert not np.any(added)
    assert not np.any(subtracted)
    assert not np.any(transitioned)
    print("🙌 Nothing added, subtracted or transitioned!")

    motilities, filoLengths = motility(trees,
                                       excludeAxon=True,
                                       excludeBasal=False,
                                       terminalDist=5,
                                       filoDist=5)
    mot = motilities['raw'][0]
    assert np.all(np.logical_or(mot == 0, np.isnan(mot)))
    assert np.all(
        np.logical_or(filoLengths[0] == filoLengths[1],
                      np.isnan(filoLengths[0])))
    assert np.array_equal(filoTypes[0], filoTypes[1])
    print("🙌 Filotypes, filo lengths match!")
Ejemplo n.º 5
0
def branchType(fullState: FullState, branchIDList: List[str],
               **kwargs: Any) -> pd.DataFrame:
    nTrees = len(fullState.trees)
    filoTypes, added, subtracted, transitioned, masterChanged, masterNodes = \
        pdAnalysis.addedSubtractedTransitioned(fullState.trees, **kwargs)
    intFiloTypes = filoTypes.astype(int)

    colNames = [('branchType_%02d' % (i + 1)) for i in range(nTrees)]
    return pd.DataFrame(data=intFiloTypes.T,
                        index=branchIDList,
                        columns=colNames)
Ejemplo n.º 6
0
def filoCount(fullState: FullState, **kwargs: Any) -> pd.DataFrame:
    filoTypes = pdAnalysis.addedSubtractedTransitioned(fullState.trees,
                                                       **kwargs)[0]
    countInterstitial = np.sum(
        (filoTypes == FiloType.INTERSTITIAL) |
        (filoTypes == FiloType.BRANCH_WITH_INTERSTITIAL),
        axis=1)
    countTerminal = np.sum((filoTypes == FiloType.TERMINAL) |
                           (filoTypes == FiloType.BRANCH_WITH_TERMINAL),
                           axis=1)
    return pd.DataFrame({
        'filoCount': countInterstitial + countTerminal,
        'interstitialFiloCount': countInterstitial,
        'terminalFiloCount': countTerminal,
    })
Ejemplo n.º 7
0
def motility(fullState: FullState, **kwargs: Any) -> pd.DataFrame:
    trees = fullState.trees
    nA: List[int] = []
    nS: List[int] = []
    nT: List[int] = []
    nE: List[int] = []
    nR: List[int] = []

    branchIDList = util.sortedBranchIDList(trees)
    _, added, subtracted, transitioned, _, _ = \
        pdAnalysis.addedSubtractedTransitioned(trees, **kwargs)
    motilityValues, _ = pdAnalysis.motility(trees, **kwargs)
    rawMotility = motilityValues['raw']  # Use raw motility

    for treeIdx, treeModel in enumerate(trees):
        if treeIdx == 0:
            # First tree has no changes by definition:
            for arr in [nA, nS, nT, nE, nR]:
                arr.append(-1)
        else:
            # Otherwise, look up A/S/T and calculate E/R
            oldTreeModel = trees[treeIdx - 1]

            growCount, shrinkCount = 0, 0
            for branch in treeModel.branches:
                branchIdx = branchIDList.index(branch.id)
                if not added[treeIdx -
                             1][branchIdx] and not transitioned[treeIdx -
                                                                1][branchIdx]:
                    motValue = rawMotility[treeIdx - 1][branchIdx]
                    if abs(motValue) > MIN_MOTILITY and len(branch.points) > 0:
                        if motValue > 0:
                            growCount += 1
                        else:
                            shrinkCount += 1
            nA.append(np.sum(added[treeIdx - 1]))
            nS.append(np.sum(subtracted[treeIdx - 1]))
            nT.append(np.sum(transitioned[treeIdx - 1]))
            nE.append(growCount)
            nR.append(shrinkCount)

    return pd.DataFrame({
        'branchesAdded': nA,
        'branchesSubtracted': nS,
        'branchesTransitioned': nT,
        'branchesExtended': nE,
        'branchesRetracted': nR,
    })
Ejemplo n.º 8
0
def calculateResults(path='data/movie5local.mat'):
    results = {}
    if path.endswith('.mat'):
        # Keep orphans around, to match against old matlab analysis
        fullState = files.importFromMatlab(path, removeOrphanBranches=False)
    else:
        assert path.endswith('.dyn.gz')
        fullState = files.loadState(path)
    trees = fullState.trees

    TERM_DIST = 5
    FILO_DIST = 5

    allTDBL = [
        TDBL(tree,
             excludeAxon=True,
             excludeBasal=False,
             includeFilo=False,
             filoDist=FILO_DIST) for tree in trees
    ]
    results['tdbl'] = np.array([allTDBL])

    filoTypes, added, subtracted, transitioned, masterChanged, masterNodes = \
        addedSubtractedTransitioned(trees, excludeAxon=True, excludeBasal=False, terminalDist=TERM_DIST, filoDist=FILO_DIST)
    results['filotypes'] = filoTypes
    results['added'] = added
    results['subtracted'] = subtracted
    results['transitioned'] = transitioned
    results['masterChanged'] = masterChanged
    results['masterNodes'] = masterNodes

    motilities, filoLengths = motility(trees,
                                       excludeAxon=True,
                                       excludeBasal=False,
                                       terminalDist=TERM_DIST,
                                       filoDist=FILO_DIST)
    results['filolengths'] = filoLengths

    return fullState, results