def computeTransitiveClosure(R):

    x0, x1, x2, x3, x4 = pyeda.bddvars('x', 5)
    y0, y1, y2, y3, y4 = pyeda.bddvars('y', 5)
    z0, z1, z2, z3, z4 = pyeda.bddvars('z', 5)

    # Transitive closure alg
    H = R
    HPrime = None

    while True:

        HPrime = H

        # H
        ff1 = H.compose({y0: z0, y1: z1, y2: z2, y3: z3, y4: z4})

        # R
        ff2 = R.compose({x0: z0, x1: z1, x2: z2, x3: z3, x4: z4})

        # H x R
        ff3 = ff1 & ff2

        # H = H v (H x R)
        H = HPrime | ff3

        # apply smoothing over all z BDD Vars to rid them from the graph
        H = H.smoothing((z0, z1, z2, z3, z4))

        if H.equivalent(HPrime):
            break

    return H
    def __init__(self, number_of_states, suffix=''):
        self._number_of_states = number_of_states
        self._model_index_length = (number_of_states-1).bit_length()

        self.msb = bddvars(consts.MODEL_IDX + suffix, self._model_index_length)
        self.msb_other = bddvars(
            consts.MODEL_OTHER_IDX + suffix, self._model_index_length)

        self.msb_compose = {self.msb[i]: self.msb_other[i]
                            for i in range(self._model_index_length)}

        self.atomic = bdd_utils.ZERO
        self.relations = bdd_utils.ZERO

        self.atomic_str = []
Ejemplo n.º 3
0
def transitive_closure(R):
    x0, x1, x2, x3, x4 = pyeda.bddvars('x', 5)
    y0, y1, y2, y3, y4 = pyeda.bddvars('y', 5)
    z0, z1, z2, z3, z4 = pyeda.bddvars('z', 5)
    Temp = R 
    temp_prime = None
    
    while True:
        temp_prime=Temp
        ff1 = Temp.compose({y0:z0, y1:z1, y2:z2, y3:z3, y4:z4 })
        ff2 = R.compose({x0:z0, x1:z1, x2:z2, x3:z3, x4:z4 }) 
        ff3 = ff1 & ff2
        Temp = temp_prime | ff3
        Temp = Temp.smoothing((z0, z1, z2, z3, z4))
        if Temp.equivalent(temp_prime):
            break

    return Temp
Ejemplo n.º 4
0
def main():
    edgeFormulaList = []
    x0, x1, x2, x3, x4 = pyeda.bddvars('x', 5)
    y0, y1, y2, y3, y4 = pyeda.bddvars('y', 5)
    print("Generating Graph...")
    for i in range(0, 32):

        for j in range(0,32):

            if (((i+3) % 32) == (j % 32)) | (((i+7) % 32) == (j % 32)):
                newFormula = conjure_formula(i, j)
                edgeFormulaList.append(newFormula)
    
    F = connect_to_edges(edgeFormulaList)
    R = pyeda.expr2bdd(F)
    print("Generating transitive closure, R*")
    RStar = transitive_closure(R) 
    print("Negating the transitive closure, R*")
    negRStar = ~RStar
    result = negRStar.smoothing((x0, x1, x2, x3, x4, y0, y1, y2, y3, y4))
    result = ~result
    print("Let x,y be in the set S. Node x can reach node y in one+ steps in a graph G. . .")
    print(f"\n{result.equivalent(True)}\n")
Ejemplo n.º 5
0
def doTC(R):

    i0, i1, i2, i3, i4 = pyeda.bddvars('i', 5)
    j0, j1, j2, j3, j4 = pyeda.bddvars('j', 5)
    k0, k1, k2, k3, k4 = pyeda.bddvars('k', 5)

    # Transitive closure algorithm
    H = R
    Hprime = None

    while True:

        Hprime = H

        p1 = H.compose({j0: k0, j1: k1, j2: k2, j3: k3, j4: k4})
        p2 = R.compose({i0: k0, i1: k1, i2: k2, i3: k3, i4: k4})
        p = p1 & p2
        H = Hprime | p
        H = H.smoothing((k0, k1, k2, k3, k4))

        if H.equivalent(Hprime):
            break

    return H
Ejemplo n.º 6
0
`N` is the length of the `X` vector.
'''


from pyeda.inter import bddvars


# The number of total variables that will be allocated. Set to 16 based on the
# requirements found in [1] W. Arthur and W. Polak, “The evolution of
# technology within a simple computer model,” Complexity, vol. 11, no. 5, pp.
# 23–31, 2006.
N = 16


X = bddvars('x', N)


def evaluated_at(circuit, bitstring):
    '''
    Evaluates the given circuit (function array) at the given bitstring and
    returns the resulting bitstring. The input and output bitstrings will be
    lists of `0` and `1`. If the input bitstring is shorter than `N`, it will
    be padded to the right with zeroes.

    :param circuit: the boolean circuit to evaluate
    :param bitstring: a list of `0` and `1` integers
    '''
    if len(bitstring) < N:
        inbits = bitstring + [0] * (N - len(bitstring))
    else:
Ejemplo n.º 7
0
        import pydot

        graph = pydot.graph_from_dot_data(func.to_dot())[0]
        graph.create_png('graph.png')
    except Exception as e:
        print("Failed to graph. No graph rendering for you! <" + type(e) + ">")


def debug(obj):
    if isDebug:
        print(str(obj))


if __name__ == '__main__':

    i0, i1, i2, i3, i4 = pyeda.bddvars('i', 5)
    j0, j1, j2, j3, j4 = pyeda.bddvars('j', 5)
    k0, k1, k2, k3, k4 = pyeda.bddvars('k', 5)

    primes = list(filter(is_prime, range(0, 32)))
    evens = list(filter(lambda x: x % 2 == 0, range(0, 32)))

    print("Building boolean expressions...")
    rList = [
        edge2Bool(i, j) for i in range(0, 32) for j in range(0, 32)
        if (((i + 3) % 32) == (j % 32)) | (((i + 8) % 32) == (j % 32))
    ]  #this just makes a list of all pairs that satisfy the condition
    pList = [num2Bool(p) for p in primes]
    eList = [num2Bool(e) for e in evens]
    debug(rList)
        # apply smoothing over all z BDD Vars to rid them from the graph
        H = H.smoothing((z0, z1, z2, z3, z4))

        if H.equivalent(HPrime):
            break

    return H


# MAIN, not gucci
if __name__ == '__main__':

    edgeFormulaList = []

    x0, x1, x2, x3, x4 = pyeda.bddvars('x', 5)
    y0, y1, y2, y3, y4 = pyeda.bddvars('y', 5)

    print("Building the graph, G..")
    # for (i, j) in G:
    for i in range(0, 32):

        for j in range(0, 32):

            if (((i + 3) % 32) == (j % 32)) | (((i + 7) % 32) == (j % 32)):

                # send the edge to to formula creation function
                newFormula = edgeToBooleanFormula(i, j)

                # add the formula to the list
                edgeFormulaList.append(newFormula)