Ejemplo n.º 1
0
def get_sizes(X, dataset_size):
    f = pyedflib.EdfReader("database/chb01_{}.edf".format(1))
    #f = pyedflib.EdfReader("database/chb01_01.edf")
    n = f.signals_in_file
    input_size = n
    length = f.getNSamples()[0]
    sigbufs = np.zeros((n, f.getNSamples()[0]))

    for i in np.arange(n):
        sigbufs[i, :] = f.readSignal(i)

    sigbufs_test = sigbufs
    print('SIZE sigbufs', np.shape(sigbufs_test))
    X = np.zeros((dataset_size, 1, 1, input_size, length, 1))
    X[0, 0, 0, :, :, 0] = sigbufs_test
    for j in range(2, dataset_size + 1):
        if (j == 19 or j == 28 or j == 35 or j == 44 or j == 45):
            j += 1
        #print(("Reading:dataset_01/chb01_{}.edf ...".format(j)))
        f = pyedflib.EdfReader("database/chb01_{}.edf".format(j))
        for i in np.arange(n):
            sigbufs[i, :] = f.readSignal(i)
        sigbufs_test = sigbufs
        X[j - 1, 0, 0, :, :, 0] = sigbufs_test
    #max_value = np.amax(abs(X))
    #X = X/max_value
    print(length)
    return X, input_size, length
Ejemplo n.º 2
0
    def test_EdfReader_Close_file(self):
        try:
            f = pyedflib.EdfReader(self.edf_data_file)
        except IOError:
            print('cannot open', self.edf_data_file)
            np.testing.assert_raises(IOError, 'cannot open file')
            return
        np.testing.assert_equal(f.getSignalLabels()[0], 'squarewave')
        f._close()
        f._close()
        del f
        try:
            f = pyedflib.EdfReader(self.edf_data_file)
        except IOError:
            print('cannot open', self.edf_data_file)
            np.testing.assert_raises(IOError, 'cannot open file')
            return
        np.testing.assert_equal(f.getSignalLabels()[0], 'squarewave')
        del f

        try:
            f = pyedflib.EdfReader(self.edf_data_file)
        except IOError:
            print('cannot open', self.edf_data_file)
            np.testing.assert_raises(IOError, 'cannot open file')
            return
        np.testing.assert_equal(f.getSignalLabels()[0], 'squarewave')
        del f
Ejemplo n.º 3
0
    def test_SampleWritingContextManager(self):
        channel_info1 = {'label':'test_label1', 'dimension':'mV', 'sample_rate':100,
                          'physical_max':1.0,'physical_min':-1.0,
                          'digital_max':8388607,'digital_min':-8388608,
                          'prefilter':'pre1','transducer':'trans1'}
        channel_info2 = {'label':'test_label2', 'dimension':'mV', 'sample_rate':100,
                          'physical_max':1.0,'physical_min':-1.0,
                          'digital_max':8388607,'digital_min':-8388608,
                          'prefilter':'pre2','transducer':'trans2'}
        
        with pyedflib.EdfWriter(self.bdfplus_data_file, 2, file_type=pyedflib.FILETYPE_BDFPLUS) as f:       

            f.setSignalHeader(0,channel_info1)
            f.setSignalHeader(1,channel_info2)
            data1 = np.ones(500) * 0.1
            data2 = np.ones(500) * 0.2
            data_list = []
            data_list.append(data1)
            data_list.append(data2)
            f.writeSamples(data_list)

        with pyedflib.EdfReader(self.bdfplus_data_file) as f:
            data1_read = f.readSignal(0)
            data2_read = f.readSignal(1)

        with pyedflib.EdfReader(self.bdfplus_data_file) as f:
            data1_read = f.readSignal(0)
            data2_read = f.readSignal(1)
            self.assertEqual(f.filetype, pyedflib.FILETYPE_BDFPLUS)


        np.testing.assert_equal(len(data1), len(data1_read))
        np.testing.assert_equal(len(data2), len(data2_read))
        np.testing.assert_almost_equal(data1, data1_read)
        np.testing.assert_almost_equal(data2, data2_read)
Ejemplo n.º 4
0
    def test_EdfReader_ReadAnnotations(self):
        try:
            f = pyedflib.EdfReader(self.edf_data_file,
                                   pyedflib.DO_NOT_READ_ANNOTATIONS)
        except IOError:
            print('cannot open', self.edf_data_file)
            return

        ann_index, ann_duration, ann_text = f.readAnnotations()
        np.testing.assert_equal(ann_index.size, 0)

        del f

        try:
            f = pyedflib.EdfReader(self.edf_data_file,
                                   pyedflib.READ_ALL_ANNOTATIONS)
        except IOError:
            print('cannot open', self.edf_data_file)
            return

        ann_index, ann_duration, ann_text = f.readAnnotations()
        np.testing.assert_almost_equal(ann_index[0], 0)
        np.testing.assert_almost_equal(ann_index[1], 600)

        np.testing.assert_equal(f.signals_in_file, 11)
        np.testing.assert_equal(f.datarecords_in_file, 600)

        for i in np.arange(11):
            np.testing.assert_almost_equal(f.getSampleFrequencies()[i], 200)
            np.testing.assert_equal(f.getNSamples()[i], 120000)

        del f
Ejemplo n.º 5
0
def _load_neuracle(data_dir):
    """
    neuracle file loader
    :param data_dir: root data dir for the experiment
    :return:
        data: ndarray, (channels, timesteps)
        ch_name: list, name of channels
        timestamp: list, index of trigger
    """
    f = {
        'data': os.path.join(data_dir, 'data.bdf'),
        'evt': os.path.join(data_dir, 'evt.bdf')
    }
    # read data
    f_data = pyedflib.EdfReader(f['data'])
    ch_names = f_data.getSignalLabels()
    data = np.array([f_data.readSignal(i) for i in range(f_data.signals_in_file)])

    # sample frequiencies
    sfreq = f_data.getSampleFrequencies()
    assert np.unique(sfreq).size == 1
    if cfg.amp_info.samplerate != sfreq[0]:
        warnings.warn('Samplerate in config file does not equal to data file record')
    cfg.amp_info.samplerate = int(sfreq[0])

    # read event
    f_evt = pyedflib.EdfReader(f['evt'])
    event, _, _ = f_evt.readAnnotations()
    event = list(map(lambda x: int(x * cfg.amp_info.samplerate), event))

    return data, ch_names, event
Ejemplo n.º 6
0
def _add_start_timestamp(data_dir, fin, ajileFormat, patient_code, day):
    if ajileFormat == True:
        f = pyedflib.EdfReader(data_dir + '/purged_' + patient_code + '_day_' +
                               str(day) + '.edf')
    else:
        f = pyedflib.EdfReader(data_dir + '/' + patient_code + '_' + str(day) +
                               '.edf')
    startDateTime = f.getStartdatetime()
    tStamp = (startDateTime - dt.utcfromtimestamp(0)
              ).total_seconds()  #convert back with dt.utcfromtimestamp()
    f._close()
    del f
    gc.collect()

    #Remove time vector (unnecessary)
    e = "/time_sec" in fin
    if e:
        del fin['time_sec']  #Don't need time vector (can create it later)

    #Save timestamp
    e = "/start_timestamp" in fin
    if e:
        del fin['start_timestamp']
    fin.create_dataset("start_timestamp", data=tStamp)
    return tStamp
Ejemplo n.º 7
0
    def test_read_incorrect_file(self):

        # this should simply not be found and not trigger the UTF8 warning
        with self.assertRaises(FileNotFoundError):
            f = pyedflib.EdfReader('does_not_exist')

        # this file is corrupted and should be found, but not be read
        # so the Exception should be OSError and not FileNotFoundError
        with self.assertRaises(OSError):
            with open(self.tmp_edf_file, 'wb') as f:
                f.write(b'0123456789')
            f = pyedflib.EdfReader(self.tmp_edf_file)

        # now we create a file that is not EDF/BDF compliant
        # this should raise an OSError and not a FileNotFoundError
        with self.assertRaises(OSError) as cm:
            channel_info = {'label': 'test_label', 'dimension': 'mV', 'sample_rate': 256,
                            'sample_frequency': 100, 'physical_max': 1.0, 'physical_min': -1.0,
                            'digital_max': 8388607, 'digital_min': -8388608,
                            'prefilter': 'pre1', 'transducer': 'trans1'}
            with pyedflib.EdfWriter(self.bdf_accented_file, 1, file_type=pyedflib.FILETYPE_BDFPLUS) as f:
                f.setSignalHeader(0,channel_info)
                f.setTechnician('tec1')
                data = np.ones(100) * 0.1
                f.writePhysicalSamples(data)
    
            with open(self.bdf_accented_file, 'rb') as f:
                content = bytearray(f.read())
                content[181] = 58
            with open(self.bdf_accented_file, 'wb') as f:
                f.write(content)

            f = pyedflib.EdfReader(self.bdf_accented_file)
        # However, the error before should not be a FileNotFoundError
        assert not isinstance(cm.exception, FileNotFoundError)
Ejemplo n.º 8
0
def get_windows(conf):
    input_path=conf['input_path']            #input path to csv or edf files
    output_path=conf['output_path']            #top of directory for processed data
    sigfiles=conf['input_files']            #list of csv/edf files
    hypfiles=conf['hyp_files']                #list of txt files containing sleep stage annotations
    win_dur=conf['win_dur']                    #duration of extracted windows
    win_ovlp=conf['win_ovlp']
    chan_list=[['Fp1',re.compile('EEG Fp1-CLE')],
               ['Fp2',re.compile('EEG Fp2-CLE')],
               ['F7',re.compile('EEG F7-CLE')],
               ['F3',re.compile('EEG F3-CLE')],
               ['Fpz',re.compile('EEG Fpz-CLE')],
               ['F4',re.compile('EEG F4-CLE')],
               ['F8',re.compile('EEG F8-CLE')],
               ['T3',re.compile('EEG T3-CLE')],
               ['C3',re.compile('EEG C3-CLE')],
               ['Cz',re.compile('EEG Cz-CLE')],
               ['C4',re.compile('EEG C4-CLE')],
               ['T4',re.compile('EEG T4-CLE')],
               ['T5',re.compile('EEG T5-CLE')],
               ['P3',re.compile('EEG P3-CLE')],
               ['Pz',re.compile('EEG *[Pp]z-CLE')],
               ['P4',re.compile('EEG P4-CLE')],
               ['T6',re.compile('EEG T6-CLE')],
               ['O1',re.compile('EEG O1-CLE')],
               ['O2',re.compile('EEG O2-CLE')],
               ['A2',re.compile('EEG A.-CLE')]]
    if not os.path.exists(output_path):
        os.makedirs(output_path)
    for i in range(len(sigfiles)):
        print('On example #'+str(i+1))
        inFile = pyedflib.EdfReader(input_path+sigfiles[i])
        ch_idx = np.zeros(len(chan_list)-1,dtype=int)
        all_chan=inFile.getSignalLabels()
        for j in range(len(chan_list)-1):
            ch_idx[j] = [x for x in range(len(all_chan)) if chan_list[j][1].match(all_chan[x])][0]
        comp_idx = [x for x in range(len(all_chan)) if chan_list[-1][1].match(all_chan[x])][0]
        ch_names=[chan_list[x][0]+'-'+chan_list[-1][0] for x in range(len(chan_list)-1)]
        base_fname = sigfiles[i].split('.')[0]
        outFile = open(output_path+base_fname+'_windows.csv','w')

        fs = int(inFile.getSignalHeader(ch_idx[0])['sample_rate'])
        sig_len = int(inFile.getFileDuration()*fs)
        pts_in_win = int(win_dur * fs)
        win_step = int((1-win_ovlp)*win_dur*fs)

        hf = pyedflib.EdfReader(input_path+str(hypfiles[i]))
        annot = hf.readAnnotations()
        count = 0
        for start in range(0,sig_len-pts_in_win,win_step):
            try:
                stg = str(annot[2][np.where(annot[0]*fs > start)[0][0]])
                count+=1
                outFile.write('Window#'+str(count)+','+stg+'\n')
                print_segment(inFile,ch_idx,comp_idx,ch_names,start,pts_in_win,outFile)
            except:
                break
        outFile.close()
    return output_path
Ejemplo n.º 9
0
def importEdf(path):
    f = None
    try:
        f = pyedflib.EdfReader(path)
    except:
        pyedflib.EdfReader(path).close()
        f = pyedflib.EdfReader(path)
    return f
Ejemplo n.º 10
0
 def __init__(self, path, annotations_path):
     self.file = pyedflib.EdfReader(path)
     self.number_of_signal = self.file.signals_in_file
     self.signals_list = []
     for i in np.arange(self.number_of_signal):
         self.signals_list.append(   \
             Signal(self.file.getLabel(i), self.file.readSignal(i),  \
                    self.file.getSampleFrequency(i)))
     self.annotations_file = pyedflib.EdfReader(annotations_path)
     self.annotations = self.annotations_file.readAnnotations()
Ejemplo n.º 11
0
    def test_TestRoundingEDF(self):
        channel_info1 = {
            'label': 'test_label1',
            'dimension': 'mV',
            'sample_rate': 100,
            'physical_max': 1.0,
            'physical_min': -1.0,
            'digital_max': 32767,
            'digital_min': -32768,
            'prefilter': 'pre1',
            'transducer': 'trans1'
        }
        f = pyedflib.EdfWriter(self.edfplus_data_file,
                               1,
                               file_type=pyedflib.FILETYPE_EDFPLUS)
        f.setSignalHeader(0, channel_info1)

        time = np.linspace(0, 5, 500)
        data1 = np.sin(2 * np.pi * 1 * time)
        data_list = []
        data_list.append(data1)
        f.writeSamples(data_list)

        f.close()
        del f

        f = pyedflib.EdfReader(self.edfplus_data_file)
        data1_read = f.readSignal(0)
        f._close()
        del f
        np.testing.assert_equal(len(data1), len(data1_read))
        np.testing.assert_almost_equal(data1, data1_read, decimal=4)

        f = pyedflib.EdfWriter(self.edfplus_data_file,
                               1,
                               file_type=pyedflib.FILETYPE_EDFPLUS)
        f.setSignalHeader(0, channel_info1)

        data_list = []
        data_list.append(data1_read)
        f.writeSamples(data_list)

        f.close()
        del f

        f = pyedflib.EdfReader(self.edfplus_data_file)
        data2_read = f.readSignal(0)
        f._close()
        del f
        np.testing.assert_equal(len(data1), len(data2_read))
        np.testing.assert_almost_equal(data1, data2_read, decimal=4)
        np.testing.assert_almost_equal(data1_read, data2_read, decimal=10)
Ejemplo n.º 12
0
    def import_files(file, file_type="accel", temp_sample_int=1):

        if file is not None and not os.path.exists(file):
            print("\nFile {} does not exists.".format(file))
            return None, None

        if file is None:
            return None, None

        if file is not None and os.path.exists(file):
            print("\nImporting {}...".format(file))

            if file_type == "accel":

                acc_file = pyedflib.EdfReader(file)
                h = acc_file.getSignalHeader(0)
                s = acc_file.getStartdatetime()
                fs = h["sample_rate"]

                df = pd.DataFrame([
                    acc_file.readSignal(0),
                    acc_file.readSignal(1),
                    acc_file.readSignal(2)
                ]).transpose()
                df.columns = ["x", "y", "z"]
                df.insert(loc=0,
                          column="Timestamp",
                          value=pd.date_range(start=s,
                                              periods=df.shape[0],
                                              freq="{}ms".format(1000 / fs)))

            if file_type == "temperature":
                temp_file = pyedflib.EdfReader(file)
                h = temp_file.getSignalHeader(0)
                s = temp_file.getStartdatetime()
                fs = h["sample_rate"]

                df = pd.DataFrame(
                    temp_file.readSignal(0)[::int(temp_sample_int * fs)],
                    columns=["Temperature"])
                df.insert(loc=0,
                          column="Timestamp",
                          value=pd.date_range(
                              start=s,
                              freq="{}S".format(temp_sample_int),
                              periods=df.shape[0]))

                fs = 1 / temp_sample_int

            print("Complete.")

        return df, fs
Ejemplo n.º 13
0
    def test_EdfReader_Close_file(self):
        f = pyedflib.EdfReader(self.edf_data_file)
        np.testing.assert_equal(f.getSignalLabels()[0], 'squarewave')

        # Don't close the file but try to reopen it and verify that it fails.
        with np.testing.assert_raises(IOError):
            ff = pyedflib.EdfReader(self.edf_data_file)

        # Now close and verify it can be re-opened/read.
        f.close()

        ff = pyedflib.EdfReader(self.edf_data_file)
        np.testing.assert_equal(ff.getSignalLabels()[0], 'squarewave')
        del f, ff
Ejemplo n.º 14
0
def _add_signal_labels(data_dir, ajileFormat, fin, patient_code, day):
    if ajileFormat == True:
        f = pyedflib.EdfReader(data_dir + '/purged_' + patient_code + '_day_' +
                               str(day) + '.edf')
    else:
        f = pyedflib.EdfReader(data_dir + '/' + patient_code + '_' + str(day) +
                               '.edf')
    signal_labels = f.getSignalLabels()

    #Add channel labels to saved data
    e = "/chanLabels" in fin
    if not e:
        dset5 = fin.create_dataset("chanLabels", data=str(signal_labels))
    return signal_labels
Ejemplo n.º 15
0
def load_data_from_NEDC(frame, epilepsy_catalog_path, no_epilepsy_catalog_path,
                        channels):
    e_path = epilepsy_catalog_path
    ne_path = no_epilepsy_catalog_path
    paths = [(e_path, 1), (ne_path, 0)]
    data = []
    labels = []
    for path_f in paths:
        files = [f for f in listdir(path_f[0]) if isfile(join(path_f[0], f))]

        for filename in files:
            input_file = pyedflib.EdfReader(path_f[0] + '/' + filename)

            n = input_file.signals_in_file
            n = n - 3
            sigbufs = np.zeros((len(channels), input_file.getNSamples()[0]))

            idx = 0
            for i in np.arange(n):
                if np.array(channels).__contains__(i):
                    sigbufs[idx, :] = input_file.readSignal(i)
                    idx = idx + 1

            f_data, f_labels = Divide_one_participant_signal_on_frames(
                sigbufs, path_f[1], frame)
            for d in f_data:
                #data.append(f_data[:][:][:][0])
                data.append(d)
            for f in f_labels:
                #labels.append(f_labels[:][0])
                labels.append(f)
    return data, labels
    def import_files(self):

        print("\nImporting data...")

        if self.la_file is not None:
            print("-Left ankle")
            self.df_la = pd.read_csv(self.la_file, skiprows=100, usecols=[0, 1, 2, 3, 6])
            self.df_la.columns = ["Timestamp", "x", "y", "z", "temperature"]
            self.df_la["Timestamp"] = pd.to_datetime(self.df_la["Timestamp"], format="%Y-%m-%d %H:%M:%S:%f")

        if self.ra_file is not None:
            print("-Right ankle")
            self.df_ra = pd.read_csv(self.ra_file, skiprows=100, usecols=[0, 1, 2, 3, 6])
            self.df_ra.columns = ["Timestamp", "x", "y", "z", "temperature"]
            self.df_ra["Timestamp"] = pd.to_datetime(self.df_ra["Timestamp"], format="%Y-%m-%d %H:%M:%S:%f")

        if self.lw_file is not None:
            print("-Left wrist")
            self.df_lw = pd.read_csv(self.lw_file, skiprows=100, usecols=[0, 1, 2, 3, 6])
            self.df_lw.columns = ["Timestamp", "x", "y", "z", "temperature"]
            self.df_lw["Timestamp"] = pd.to_datetime(self.df_lw["Timestamp"], format="%Y-%m-%d %H:%M:%S:%f")

        if self.rw_d_file is not None:
            print("-Right wrist #1")
            self.df_rw_d = pd.read_csv(self.rw_d_file, skiprows=100, usecols=[0, 1, 2, 3, 6])
            self.df_rw_d.columns = ["Timestamp", "x", "y", "z", "temperature"]
            self.df_rw_d["Timestamp"] = pd.to_datetime(self.df_rw_d["Timestamp"], format="%Y-%m-%d %H:%M:%S:%f")

        if self.rw_p_file is not None:
            print("-Right wrist #2")
            self.df_rw_p = pd.read_csv(self.rw_p_file, skiprows=100, usecols=[0, 1, 2, 3, 6])
            self.df_rw_p.columns = ["Timestamp", "x", "y", "z", "temperature"]
            self.df_rw_p["Timestamp"] = pd.to_datetime(self.df_rw_p["Timestamp"], format="%Y-%m-%d %H:%M:%S:%f")

        if self.bf_file is not None:
            print("-Bittium Faros")

            import pyedflib

            file = pyedflib.EdfReader(self.bf_file)
            x = file.readSignal(chn=0, start=0)
            y = file.readSignal(chn=1, start=0)
            z = file.readSignal(chn=2, start=0)
            self.bf_fs = file.getSampleFrequencies()[1]
            starttime = file.getStartdatetime()
            timestamps = pd.date_range(start=starttime, end=starttime + timedelta(seconds=len(x)/self.bf_fs),
                                       freq="{}ms".format(1000/self.bf_fs))

            self.df_bf = pd.DataFrame(list(zip(timestamps, x, y, z)),
                                      columns=["Timestamp", "x", "y", "z"])

            file.close()

        if self.event_log is not None:
            print("-Event log")
            self.df_event = pd.read_excel(self.event_log)
            self.df_event["Start"] = pd.to_datetime(self.df_event["Start"])
            self.df_event["Stop"] = pd.to_datetime(self.df_event["Stop"])

        print("Complete.")
Ejemplo n.º 17
0
def extract_metadata(file_path:str, test_group:str):
    """Extract metadata from an edf file.
    Output path: ROOT/meta_data/test_group/*.csv
    """
    f = pyedflib.EdfReader(file_path)  # open the edf file
    participant_id = re.search(
        '[A-Z]\d+-\d-\d', file_path.split('/')[-1]).group()
    signals_in_file = f.getSignalLabels()
    signal_duration = f.file_duration # in seconds
    headers = f.getHeader()
    start_dt = headers.pop('startdate', None)
    signal_info = f.getSignalHeaders()
    all_info = {'participant_id': participant_id,
                'participant_group': test_group,
                'start_datetime': str(start_dt),
                'signals_in_file': {'number_of_signals': len(signals_in_file),
                                    'signal_labels': signals_in_file,
                                    'signal_duration': signal_duration},
                'headers': headers,
                'signal_info': signal_info}
    output_fname = file_path.split('/')[-1].replace('.edf', '.json')
    output_dir = os.path.join(ROOT+'_meta_data/', test_group)
    
    if not os.path.isdir(output_dir):
        os.makedirs(output_dir)
    with open(os.path.join(output_dir, output_fname), 'w') as fn:
        json.dump(all_info, fn)
Ejemplo n.º 18
0
 def add_view_from_file(self, file: Path, panel_index: int = None):
     if file.suffix == '.edf':
         import pyedflib
         with pyedflib.EdfReader(str(file)) as f:
             labels = f.getSignalLabels()
             for label in labels:
                 index = labels.index(label)
                 wav = tracking.Wave(f.readSignal(index),
                                     f.getSampleFrequency(index))
                 wav.label = label
                 wav.path = file.with_name(file.stem + '-' + label + '.wav')
                 wav.min = f.getPhysicalMinimum(index)
                 wav.max = f.getPhysicalMaximum(index)
                 wav.unit = f.getPhysicalDimension(index)
                 self.add_view(wav,
                               panel_index=panel_index,
                               y_min=wav.min,
                               y_max=wav.max)
     else:
         try:
             track_obj = tracking.Track.read(file)
         except Exception as e:
             logging.exception(e)
         else:
             self.add_view(track_obj, panel_index=panel_index)
Ejemplo n.º 19
0
    def test_EdfReader_signalInfos(self):
        try:
            f = pyedflib.EdfReader(self.edf_data_file)
        except IOError:
            print('cannot open', self.edf_data_file)
            return
        np.testing.assert_equal(f.getSignalLabels()[0], 'squarewave')
        np.testing.assert_equal(f.getLabel(0), 'squarewave')
        np.testing.assert_equal(f.getPrefilter(0), 'pre1')
        np.testing.assert_equal(f.getTransducer(0), 'trans1')
        for i in np.arange(1, 11):
            np.testing.assert_equal(f.getPhysicalDimension(i), 'uV')
            np.testing.assert_equal(f.getSampleFrequency(i), 200)
            np.testing.assert_equal(f.getSampleFrequencies()[i], 200)

        np.testing.assert_equal(f.getSignalLabels()[1], 'ramp')
        np.testing.assert_equal(f.getSignalLabels()[2], 'pulse')
        np.testing.assert_equal(f.getSignalLabels()[3], 'noise')
        np.testing.assert_equal(f.getSignalLabels()[4], 'sine 1 Hz')
        np.testing.assert_equal(f.getSignalLabels()[5], 'sine 8 Hz')
        np.testing.assert_equal(f.getSignalLabels()[6], 'sine 8.1777 Hz')
        np.testing.assert_equal(f.getSignalLabels()[7], 'sine 8.5 Hz')
        np.testing.assert_equal(f.getSignalLabels()[8], 'sine 15 Hz')
        np.testing.assert_equal(f.getSignalLabels()[9], 'sine 17 Hz')
        np.testing.assert_equal(f.getSignalLabels()[10], 'sine 50 Hz')
        # testing file info and file_info_log
        f.file_info()
        f.file_info_long()
        f.close()
Ejemplo n.º 20
0
    def test_BdfReader_Read_accented_file(self):
        channel_info = {
            'label': 'test_label',
            'dimension': 'mV',
            'sample_rate': 100,
            'physical_max': 1.0,
            'physical_min': -1.0,
            'digital_max': 8388607,
            'digital_min': -8388608,
            'prefilter': 'pre1',
            'transducer': 'trans1'
        }
        f = pyedflib.EdfWriter(self.bdf_accented_file,
                               1,
                               file_type=pyedflib.FILETYPE_BDFPLUS)
        f.setSignalHeader(0, channel_info)
        f.setTechnician('tec1')
        data = np.ones(100) * 0.1
        f.writePhysicalSamples(data)
        f.writePhysicalSamples(data)
        del f

        f = pyedflib.EdfReader(self.bdf_accented_file,
                               pyedflib.READ_ALL_ANNOTATIONS,
                               pyedflib.DO_NOT_CHECK_FILE_SIZE)
        np.testing.assert_equal(f.getTechnician(), 'tec1')

        np.testing.assert_equal(f.getLabel(0), 'test_label')
        np.testing.assert_equal(f.getPhysicalDimension(0), 'mV')
        np.testing.assert_equal(f.getPrefilter(0), 'pre1')
        np.testing.assert_equal(f.getTransducer(0), 'trans1')
        np.testing.assert_equal(f.getSampleFrequency(0), 100)
        np.testing.assert_equal(f.getSignalHeader(0), channel_info)
        np.testing.assert_equal(f.getSignalHeaders(), [channel_info])
        del f
Ejemplo n.º 21
0
 def getData(self):
     fileObj = QFileDialog.getOpenFileName(
         self,
         "Choose the file",
         dir=".",
         filter="Data files (*.mat *.edf)")
     if fileObj[0] == '':
         return
     filePath = fileObj[0]
     fileType = filePath.split('.')[-1]
     chNames = None
     if fileType == 'mat':
         fileData = scipy.io.loadmat(filePath)
         data = [
             fileData[key] for key in fileData
             if type(fileData[key]) == np.ndarray
         ][0]
         if np.shape(data)[0] > np.shape(data)[1]:
             data = data.transpose()
     elif fileType == 'edf':
         f = pyedflib.EdfReader(filePath)
         n = f.signals_in_file
         chNames = f.getSignalLabels()
         data = np.zeros((n, f.getNSamples()[0]))
         for i in np.arange(n):
             try:
                 data[i, :] = f.readSignal(i)
             except Exception as e:
                 print(chNames[i], ' skipped', e)
         print(np.shape(data))
     return filePath, data, chNames
Ejemplo n.º 22
0
    def loadFile(self):
        f = pyedflib.EdfReader(self.filePath)
        self.numChannels = f.signals_in_file
        print ("number of signals in file = ", self.numChannels)
        self.signal_labels = f.getSignalLabels()
        print ("signal labels = ", self.signal_labels)

        # numSamples = 3600 * 256 = 921,600
        self.numSamples = f.getNSamples()[0]
        # sampleFrequency = 256
        self.sampleFrequency = f.getSampleFrequency(0)
        self.sigbufs = np.zeros((self.numChannels, self.numSamples))
        for i in np.arange(self.numChannels):
            self.sigbufs[i, :] = f.readSignal(i)
        # sigbufs above is a 23 x 921600 matrix
        # transpose it so that it becomes 921600 x 23 matrix
        self.sigbufs = self.sigbufs.transpose()
        
        # cleanup the sigbufs and signal_labels so that duplicate signals
        # are eliminated.
        columnsToDel = []
        labelsRead = []
        for i in range(len(self.signal_labels)):
            if (re.search('\w+\d+-\w+\d+', self.signal_labels[i]) == None):
                columnsToDel.append(i)
            if (self.signal_labels[i] in labelsRead):
                if (i not in columnsToDel):
                    columnsToDel.append[i]
        
        # Now remove the columns from sig_labels and sigbufs
        self.sigbufs = np.delete(self.sigbufs, columnsToDel, axis=1)
        self.signal_labels = np.delete(self.signal_labels, columnsToDel, axis=0)
        print ("new signal labels = ", self.signal_labels)
 def __load_edf_data(path):
     edf = None
     try:
         edf = pyedflib.EdfReader(path)
     except OSError:
         print('psg load err')
     return edf
Ejemplo n.º 24
0
def test_generator():
    """
    Get an sample EDF-file

    Parameters
    ----------
    None

    Returns
    -------
    f : EdfReader object
       object containing the handle to the file

    Examples
    --------
    >>> import pyedflib.data
    >>> f = pyedflib.data.test_generator()
    >>> f.signals_in_file == 11
    True
    >>> f._close()
    >>> del f

    """
    fname = get_generator_filename()
    f = pyedflib.EdfReader(fname)
    return f
    def __init__(self, edf_path_dir, edf_file_name, channels=None):
        self.edf_path_dir = edf_path_dir
        self.edf_file_name = edf_file_name

        groups_edf_file = re.match("S(\\d+)R(\\d+).edf",
                                   edf_file_name).groups()
        self.subject = groups_edf_file[0]
        self.run_execution = groups_edf_file[1]
        self.__file = pyedflib.EdfReader(
            os.path.join(edf_path_dir, edf_file_name))

        annotations = self.__file.readAnnotations()
        self.__onset_events = annotations[0]
        self.__duration_events = annotations[1]
        self.__events = annotations[2]

        self.frequency = self.__file.getSampleFrequencies()[0]
        self.n_samples = int(
            np.round(np.sum(self.__duration_events), decimals=2) *
            self.frequency)
        self.n_channels = self.__file.signals_in_file if channels is None else len(
            channels)
        self.channels = np.arange(
            self.n_channels) if channels is None else channels
        self.channels_labels = np.array(
            self.__file.getSignalLabels())[self.channels]
        self.data, self.labels = self.__read()
Ejemplo n.º 26
0
    def loadEDF(self):
        if not self.edf:
            try:
                self.edf = pyedflib.EdfReader(self.edf_filename)
            except OSError as osErr:
                print("OSError:", "Loading", self.edf_filename)
                raise osErr

        for ch in self.channels:  # ['C3','C4','O1','O2','EOG-L','EOG-R','EMG','A1','A2']
            self.myprint('Loading', ch)
            if isinstance(self.channels_used[ch], int):

                self.loaded_channels[ch] = self.edf.readSignal(self.channels_used[ch])
                if self.edf.getPhysicalDimension(self.channels_used[ch]).lower() == 'mv':
                    self.myprint('mv')
                    self.loaded_channels[ch] *= 1e3
                elif self.edf.getPhysicalDimension(self.channels_used[ch]).lower() == 'v':
                    self.myprint('v')
                    self.loaded_channels[ch] *= 1e6

                fs = int(self.edf.samplefrequency(self.channels_used[ch]))
                # fs = Decimal(fs).quantize(Decimal('.0001'), rounding=ROUND_DOWN)
                print('fs', fs)

                self.resampling(ch, fs)
                print('Resampling done')

                # Trim excess
                self.trim(ch)

            else:
                print('channel[', ch, '] was empty (skipped)', sep='')
                del self.channels_used[ch]
def load_edf_file(filename, channels_to_load, cohort, channel_alias, merged):
    f = pyedflib.EdfReader(filename)
    labels = f.getSignalLabels()
    contained = {channel_alias[e]: i for (i, e) in enumerate(labels) if e in channel_alias}
    if not contained or len(contained) != len(channels_to_load):
        print(labels)
        print(contained)
        return -1
    
    fss = f.getSampleFrequencies()
    if cohort == 'SHHS':
        if merged == True:
            fs = fss[contained['ecg']]
            n = f.getNSamples()[contained['ecg']]
            X = np.zeros((len(channels_to_load), n))
    #lowcut = .3
    #highcut = 40.
    for chan_name, chan_idx_in_file in contained.items():
        # g = f.getPhysicalMaximum(chan_idx_in_file) / f.getDigitalMaximum(chan_idx_in_file)
        # x = g*f.readSignal(chan_idx_in_file)
        x = f.readSignal(chan_idx_in_file)
        if fss[chan_idx_in_file] != fs:
            time = np.arange(0, len(x) / fss[chan_idx_in_file], 1 / fs)
            t = np.arange(0, len(x) / fss[chan_idx_in_file], 1 / fss[chan_idx_in_file])
            F = interp1d(t, x, kind='linear', fill_value = 'extrapolate')
            x = F(time)
        X[channels_to_load[chan_name],:] = x
    data = {'x': X, 'fs': fs, 'labels': labels}
    return data
Ejemplo n.º 28
0
    def loadHeader(self):
        if not self.edf:
            print(self.edf_filename)
            self.edf = pyedflib.EdfReader(self.edf_filename)

        signal_labels = self.edf.getSignalLabels()
        return signal_labels
    def __init__(self, buffer_size=500):

        # read data from local file
        path = 'sample_short.edf'
        edf_file = pyedflib.EdfReader(path)
        samples = edf_file.getNSamples()

        # For the sample data, these are the channel labels
        # 8. EOGl:A2, 9. EOGr:A1, 0. C3:A2, 1. C4:A1, 6. EMG
        # sampling rate of the data is 256 Hz

        self.total_samples = samples[0]
        self.data = np.empty([5, self.total_samples])
        self.sampling_rate = edf_file.getSampleFrequency(0)
        # C3-A2
        self.data[0, :] = np.asarray(edf_file.readSignal(0))
        # C4-A1
        self.data[1, :] = np.asarray(edf_file.readSignal(1))
        # EOG-L-A2
        self.data[2, :] = np.asarray(edf_file.readSignal(8))
        # EOG-R-A1
        self.data[3, :] = np.asarray(edf_file.readSignal(9))
        # chin-EMG
        self.data[4, :] = np.asarray(edf_file.readSignal(6))

        # No of samples to read each time
        self.buffer_size = buffer_size
        self.buffer_samples = int(buffer_size * 256.0 / 1000)
        self.current_location = 0
        self.last_call_time = None
        edf_file._close()
Ejemplo n.º 30
0
def read_edf_header(edf_file):
    """
    Reads the header and signal headers of an EDF file and it's annotations

    Parameters
    ----------
    edf_file : str
        EDF/BDF file to read.

    Returns
    -------
    summary : dict
        header of the edf file as dictionary.

    """
    assert os.path.isfile(edf_file), 'file {} does not exist'.format(edf_file)
    with pyedflib.EdfReader(edf_file) as f:
        annotations = f.read_annotation()
        annotations = [[t // 10000000, d if d else -1, x]
                       for t, d, x in annotations]
        summary = f.getHeader()
        summary['Duration'] = f.getFileDuration()
        summary['SignalHeaders'] = f.getSignalHeaders()
        summary['channels'] = f.getSignalLabels()
        summary['annotations'] = annotations
    del f
    return summary