def get_ergodic_set(dtrajs, tau):

    m = MaximumLikelihoodMSM(lag=tau, connectivity='largest', reversible=True)
    m.fit(dtrajs)

    erg_dtrajs = [x for x in m.dtrajs_active if not -1 in x]

    m = MaximumLikelihoodMSM(lag=tau, connectivity='largest', reversible=True)
    m.fit(erg_dtrajs)

    assert m.active_count_fraction == 1.0, 'Active count fraction not 1'

    return erg_dtrajs
Ejemplo n.º 2
0
 def test_score_cv(self):
     self._score_cv(MaximumLikelihoodMSM(lag=10, reversible=True))
     self._score_cv(MaximumLikelihoodMSM(lag=10, reversible=True, statdist_constraint=self.statdist))
     self._score_cv(MaximumLikelihoodMSM(lag=10, reversible=False))
     self._score_cv(MaximumLikelihoodMSM(lag=10, reversible=True, sparse=True))
     self._score_cv(MaximumLikelihoodMSM(lag=10, reversible=True, statdist_constraint=self.statdist, sparse=True))
     self._score_cv(MaximumLikelihoodMSM(lag=10, reversible=False, sparse=True))
Ejemplo n.º 3
0
    def setUpClass(cls):
        P = np.array([[0.5, .25, .25, 0.],
                      [0., .25, .5, .25],
                      [.25, .25, .5, 0],
                      [.25, .25, .25, .25],
                      ])
        # bogus its object
        lags = [1, 2, 3, 5, 10]
        dtraj = generate_traj(P, 1000)
        estimator = MaximumLikelihoodMSM(dt_traj='10 ps')
        cls.its = ImpliedTimescales(estimator=estimator)
        cls.its.estimate(dtraj, lags=lags)

        cls.refs = cls.its.timescales[-1]
        return cls
Ejemplo n.º 4
0
    def setUpClass(cls):
        P = np.array([
            [0.5, .25, .25, 0.],
            [0., .25, .5, .25],
            [.25, .25, .5, 0],
            [.25, .25, .25, .25],
        ])
        # bogus its object
        lags = [1, 2, 3, 5, 10]
        cls.dtraj = MarkovStateModel(P).simulate(1000)
        cls.estimator = MaximumLikelihoodMSM(dt_traj='10 ps')
        cls.its = ImpliedTimescales(estimator=cls.estimator, n_jobs=1)
        cls.its.estimate(cls.dtraj, lags=lags)

        cls.refs = cls.its.timescales[-1]
        return cls
Ejemplo n.º 5
0
from pyemma.msm import MaximumLikelihoodMSM
from pyemma.coordinates.util import DtrajReshape
from msmbuilder.cluster import NDGrid
from sklearn.pipeline import Pipeline
import pickle
from glob import glob
import numpy as np

# traj_paths = glob('data/000.5pc/*.npy')
# X = [np.load(traj_path) for traj_path in traj_paths]

xmin, xmax = -1.2, 1.2
tau = 1 

model = Pipeline([('cluster',NDGrid(min=xmin, max=xmax, n_bins_per_feature=200)),
                  ('msm', MaximumLikelihoodMSM(lag=1, score_method='vamp1'))])

pickle.dump(model, open('model_lag1.pickl', 'wb'))



    results = {
        'tau': [],
        'k': [],
        'bic': [],
        'aic': [],
        'icl': [],
        'entropy': [],
        'n_obs': [],
        'dofs': []
    }
    print('tau = ', tau)
    for k in [ks[-1]]:
        print('\tk = ', k)

        m = MaximumLikelihoodMSM(lag=tau,
                                 connectivity='largest',
                                 reversible=True)
        m.fit(erg_dtrajs)

        assert m.active_count_fraction == 1.0, 'Active count fraction not 1.0'

        print('\tFitting HMM')

        hmm = estimate_hidden_markov_model(dtrajs=erg_dtrajs,
                                           nstates=int(k),
                                           lag=tau,
                                           stationary=False,
                                           reversible=True,
                                           connectivity='largest')
        #hmm = MaximumLikelihoodHMSM(nstates=int(k), lag=tau, stationary=False, reversible=True, connectivity='largest', msm_init=m)
        #hmm.fit(erg_dtrajs[:2])