Ejemplo n.º 1
0
    def test_continuous_ticks(self):
        filter_provider = TicksInPeriodProvider(
            ticker=['AAPL', 'GOOG'],
            bgn_prd=datetime.datetime.now() - datetime.timedelta(days=1),
            ascend=True,
            delta=relativedelta(minutes=15))

        listeners = AsyncListeners()

        with IQFeedHistoryEvents(listeners=listeners,
                                 fire_batches=True,
                                 filter_provider=filter_provider,
                                 num_connections=2) as listener:
            events_count = {'ticks': 0, 'batches': 0, 'minibatches': 0}

            e1 = threading.Event()

            def process_batch_listener(event):
                if event['type'] == 'level_1_tick_batch':
                    try:
                        self.assertTrue(len(event['data']) > 0)
                        self.assertEqual(len(event['data'].shape), 2)
                        self.assertEqual(event['data'].shape[1], 14)
                    finally:
                        events_count['batches'] += 1
                        if events_count['batches'] >= 2:
                            e1.set()

            listeners += process_batch_listener
            listener.start()
            e1.wait()
Ejemplo n.º 2
0
    def test_multiple_ticks(self):
        filter_provider = DefaultFilterProvider()
        filter_provider += TicksFilter(ticker=["IBM", "AAPL"], max_ticks=100)

        listeners = AsyncListeners()

        with IQFeedHistoryEvents(
                listeners=listeners,
                fire_batches=True,
                filter_provider=filter_provider,
                num_connections=2) as listener, listener.batch_provider(
                ) as provider:
            e1 = threading.Event()

            def process_batch_listener_column(event):
                if event['type'] == 'level_1_tick_batch':
                    try:
                        batch = event['data']
                        self.assertEqual(batch.shape[1], 14)
                    finally:
                        e1.set()

            listeners += process_batch_listener_column

            listener.start()

            e1.wait()

            for i, d in enumerate(provider):
                self.assertEqual(d.shape[1], 14)

                if i == 1:
                    break
Ejemplo n.º 3
0
    def test_daily_2(self):
        filter_provider = DefaultFilterProvider()
        filter_provider += BarsDailyFilter(ticker=["IBM", "AAPL"], num_days=20)

        listeners = AsyncListeners()

        with IQFeedHistoryEvents(
                listeners=listeners,
                fire_batches=True,
                filter_provider=filter_provider,
                num_connections=2) as listener, listener.batch_provider(
                ) as provider:
            e1 = threading.Event()

            def process_batch_listener_column(event):
                if event['type'] == 'daily_batch':
                    batch = event['data']
                    self.assertEqual(batch.shape, (40, 8))
                    e1.set()

            listeners += process_batch_listener_column

            listener.start()

            e1.wait()

            for i, d in enumerate(provider):
                self.assertEqual(d.shape, (40, 8))

                if i == 1:
                    break
Ejemplo n.º 4
0
    def test_continuous_bars(self):
        now = datetime.datetime.now()

        filter_provider = BarsInPeriodProvider(ticker=['AAPL', 'GOOG'],
                                               bgn_prd=datetime.datetime(
                                                   now.year - 2, 1, 1),
                                               delta=relativedelta(days=10),
                                               interval_len=3600,
                                               ascend=True,
                                               interval_type='s')

        listeners = AsyncListeners()

        with IQFeedHistoryEvents(listeners=listeners,
                                 fire_batches=True,
                                 filter_provider=filter_provider,
                                 num_connections=2) as listener:
            events_count = {'bars': 0, 'batches': 0, 'minibatches': 0}

            e1 = threading.Event()

            def process_batch_listener(event):
                if event['type'] == 'bar_batch':
                    try:
                        self.assertEqual(len(event['data'].index.levels[0]), 2)
                        self.assertFalse(event['data'].isnull().values.any())
                    finally:
                        events_count['batches'] += 1
                        if events_count['batches'] >= 2:
                            e1.set()

            listeners += process_batch_listener
            listener.start()
            e1.wait()
Ejemplo n.º 5
0
    def test_bar_split_adjust_2(self):
        filter_provider = DefaultFilterProvider()
        filter_provider += BarsInPeriodFilter(
            ticker=["PLUS", "AAPL"],
            bgn_prd=datetime.datetime(2017, 3, 31),
            end_prd=datetime.datetime(2017, 4, 5),
            interval_len=3600,
            ascend=True,
            interval_type='s')

        listeners = AsyncListeners()

        with IQFeedHistoryEvents(
                listeners=listeners,
                fire_batches=True,
                filter_provider=filter_provider,
                sync_timestamps=False,
                timestamp_first=True,
                num_connections=2) as listener, listener.batch_provider(
                ) as provider:
            listener.start()

            for i, d in enumerate(provider):
                idx = pd.IndexSlice

                self.assertLess(d.loc[idx[:, 'PLUS'], 'open'].max(), 68)
                self.assertGreater(d.loc[idx[:, 'PLUS'], 'open'].min(), 65)
                self.assertGreater(d.loc[idx[:, 'AAPL'], 'open'].min(), 142)

                if i == 1:
                    break
Ejemplo n.º 6
0
    def test_1(self):
        e_orders = {'GOOG': threading.Event(), 'AAPL': threading.Event()}
        e_cancel = threading.Event()
        e_positions = threading.Event()

        listeners = AsyncListeners()

        class CustomIBEvents(IBEvents):
            def cancel_all_orders(self):
                self.reqOpenOrders()

            def openOrder(self, orderId, contract, order, orderState):
                super().openOrder(orderId, contract, order, orderState)
                if orderState.status == 'PreSubmitted':
                    self.cancelOrder(orderId)
                    e_orders[contract.symbol].set()

            def openOrderEnd(self):
                super().openOrderEnd()
                e_cancel.set()

        ibe = CustomIBEvents(listeners=listeners,
                             ipaddress="127.0.0.1",
                             portid=4002,
                             clientid=0)

        with ibe:
            listeners += lambda x: e_orders['GOOG'].set() if isinstance(
                x['data'], BaseOrder) and x['type'] == 'order_fulfilled' and x[
                    'data'].symbol == 'GOOG' else None
            listeners({
                'type': 'order_request',
                'data': MarketOrder(Type.BUY, 'GOOG', 1)
            })

            listeners += lambda x: e_orders['AAPL'].set() if isinstance(
                x['data'], BaseOrder) and x['type'] == 'order_fulfilled' and x[
                    'data'].symbol == 'AAPL' else None
            listeners({
                'type': 'order_request',
                'data': MarketOrder(Type.BUY, 'AAPL', 1)
            })

            listeners += lambda x: e_positions.set() if isinstance(
                x['data'], pd.DataFrame) and x['type'
                                               ] == 'ibapi_positions' else None
            listeners({'type': 'positions_request', 'data': None})

            for e in e_orders.values():
                e.wait()

            e_positions.wait()

            ibe.cancel_all_orders()

            e_cancel.wait()
Ejemplo n.º 7
0
    def test_logging(self):
        client = pymongo.MongoClient()

        try:
            # logging.basicConfig(level=logging.DEBUG)
            listeners = AsyncListeners()

            fulfilled_orders = SyncListeners()

            pm = PortfolioManager(
                listeners=listeners,
                initial_capital=10000,
                fulfilled_orders_event_stream=fulfilled_orders)

            store = MongoDBStore(
                client.test_db.store,
                lambda event: event['type'] == 'portfolio_update',
                listeners=listeners)

            # order 1
            o1 = MarketOrder(Type.BUY, 'GOOG', 100)
            o1.add_position(14, 23)
            o1.add_position(86, 24)
            o1.fulfill_time = datetime.datetime.now()

            e1 = threading.Event()
            listeners += lambda x: e1.set() if x['type'
                                                 ] == 'store_object' else None
            fulfilled_orders(o1)
            e1.wait()

            # order 2
            o2 = MarketOrder(Type.BUY, 'AAPL', 50)
            o2.add_position(50, 21)
            o2.fulfill_time = datetime.datetime.now()

            e2 = threading.Event()
            listeners += lambda x: e2.set() if x['type'
                                                 ] == 'store_object' else None
            fulfilled_orders(o2)
            e2.wait()

            obj = store.restore(client.test_db.store, pm._id)
            self.assertEqual(obj._id, pm._id)
            self.assertEqual(len(obj.orders), 2)
            self.assertEqual(obj.initial_capital, 10000)
        finally:
            client.drop_database('test_db')
Ejemplo n.º 8
0
    def test_bars_2(self):
        filter_provider = DefaultFilterProvider()
        filter_provider += BarsInPeriodFilter(
            ticker=["IBM", "AAPL"],
            bgn_prd=datetime.datetime(2017, 3, 1),
            end_prd=datetime.datetime(2017, 3, 2),
            interval_len=60,
            ascend=True,
            interval_type='s',
            max_ticks=20)

        listeners = AsyncListeners()

        with IQFeedHistoryEvents(
                listeners=listeners,
                fire_batches=True,
                num_connections=2,
                filter_provider=filter_provider
        ) as listener, listener.batch_provider() as provider:
            e1 = threading.Event()

            def process_batch_listener_column(event):
                if event['type'] == 'bar_batch':
                    batch = event['data']
                    self.assertEqual(len(batch.index.levels), 2)
                    self.assertEqual(batch.loc['AAPL'].shape[1], 9)
                    self.assertEqual(batch.loc['IBM'].shape[1], 9)
                    self.assertFalse(batch.isnull().values.any())
                    e1.set()

            listeners += process_batch_listener_column

            listener.start()

            e1.wait()

            for i, d in enumerate(provider):
                self.assertEqual(len(d.index.levels), 2)
                self.assertEqual(d.loc['AAPL'].shape[1], 9)
                self.assertEqual(d.loc['IBM'].shape[1], 9)
                self.assertFalse(d.isnull().values.any())

                if i == 1:
                    break
Ejemplo n.º 9
0
    def test_bar_split_adjust_1(self):
        filter_provider = DefaultFilterProvider()
        filter_provider += BarsInPeriodFilter(
            ticker="PLUS",
            bgn_prd=datetime.datetime(2017, 3, 31),
            end_prd=datetime.datetime(2017, 4, 5),
            interval_len=3600,
            ascend=True,
            interval_type='s',
            max_ticks=100)

        listeners = AsyncListeners()

        with IQFeedHistoryEvents(
                listeners=listeners,
                fire_batches=True,
                filter_provider=filter_provider,
                timestamp_first=True,
                num_connections=2) as listener, listener.batch_provider(
                ) as provider:
            e1 = threading.Event()

            def process_bar(event):
                if event['type'] == 'bar_batch':
                    d = event['data']
                    try:
                        self.assertLess(d['open'].max(), 68)
                        self.assertGreater(d['open'].min(), 65)
                    finally:
                        e1.set()

            listeners += process_bar

            listener.start()

            e1.wait()

            for i, d in enumerate(provider):
                self.assertLess(d['open'].max(), 68)
                self.assertGreater(d['open'].min(), 65)

                if i == 1:
                    break
Ejemplo n.º 10
0
    def test_bar(self):
        filter_provider = DefaultFilterProvider()
        filter_provider += BarsFilter(ticker="IBM",
                                      interval_len=60,
                                      interval_type='s',
                                      max_bars=20)

        listeners = AsyncListeners()

        with IQFeedHistoryEvents(
                listeners=listeners,
                fire_batches=True,
                filter_provider=filter_provider,
                num_connections=2) as listener, listener.batch_provider(
                ) as provider:
            e1 = threading.Event()

            def process_batch_listener_column(event):
                if event['type'] == 'bar_batch':
                    batch = event['data']
                    self.assertEqual(batch.shape, (20, 9))
                    e1.set()

            listeners += process_batch_listener_column

            listener.start()

            e1.wait()

            for i, d in enumerate(provider):
                self.assertEqual(d.shape, (20, 9))
                self.assertNotEqual(d['timestamp'].iloc[0],
                                    d['timestamp'].iloc[1])

                if i == 1:
                    break
Ejemplo n.º 11
0
    def test_historical_bar_mock_orders(self):
        with IQFeedHistoryProvider() as provider:
            listeners = AsyncListeners()

            f = BarsFilter(ticker=["GOOG", "AAPL", "IBM"],
                           interval_len=60,
                           interval_type='s',
                           max_bars=5)
            data = provider.request_data(f, sync_timestamps=False).swaplevel(
                0, 1).sort_index()
            dre = DataReplayEvents(listeners=listeners,
                                   data_replay=DataReplay().add_source(
                                       [data], 'data', historical_depth=5),
                                   event_name='bar')

            bars = dre.event_filter_by_source('data')

            order_request_events = SyncListeners()

            me = MockExchange(listeners=listeners,
                              order_requests_event_stream=order_request_events,
                              bar_event_stream=bars,
                              order_processor=StaticSlippageLoss(0.1),
                              commission_loss=PerShareCommissionLoss(0.1))

            pm = PortfolioManager(
                listeners=listeners,
                initial_capital=10000,
                bar_event_stream=bars,
                fulfilled_orders_event_stream=me.fulfilled_orders_stream())

            portfolio_updates = pm.portfolio_updates_stream()

            o1 = StopLimitOrder(Type.BUY, 'GOOG', 1, 99999, 1)
            o2 = StopLimitOrder(Type.BUY, 'AAPL', 3, 99999, 1)
            o3 = StopLimitOrder(Type.BUY, 'IBM', 1, 99999, 1)
            o4 = StopLimitOrder(Type.SELL, 'AAPL', 1, 1, 99999)

            order_request_events(o1)
            order_request_events(o2)
            order_request_events(o3)
            order_request_events(o4)

            e1 = threading.Event()
            portfolio_updates += lambda x: e1.set(
            ) if 'GOOG' in x.symbols else None

            e2 = threading.Event()
            portfolio_updates += lambda x: e2.set(
            ) if 'AAPL' in x.symbols else None

            e3 = threading.Event()
            portfolio_updates += lambda x: e3.set(
            ) if 'IBM' in x.symbols else None

            dre.start()

            e1.wait()
            e2.wait()
            e3.wait()

        self.assertLess(pm.capital, pm.initial_capital)
        self.assertTrue('GOOG' in pm.symbols)
        self.assertTrue('AAPL' in pm.symbols)
        self.assertTrue('IBM' in pm.symbols)

        self.assertEqual(pm.quantity('GOOG'), 1)
        self.assertEqual(pm.quantity('AAPL'), 2)
        self.assertEqual(pm.quantity('IBM'), 1)

        self.assertGreater(pm.value('GOOG'), 0)
        self.assertGreater(pm.value('AAPL'), 0)
        self.assertGreater(pm.value('IBM'), 0)
Ejemplo n.º 12
0
    def test_historical_price_updates(self):
        listeners = AsyncListeners()
        fulfilled_orders = SyncListeners()

        # order 1
        o1 = MarketOrder(Type.BUY, 'GOOG', 100)
        o1.add_position(14, 1)
        o1.add_position(86, 1)
        o1.fulfill_time = datetime.datetime.now()

        e1 = threading.Event()
        listeners += lambda x: e1.set() if x[
            'type'] == 'portfolio_value_update' else None

        # order 2
        o2 = MarketOrder(Type.BUY, 'GOOG', 90)
        o2.add_position(4, 0.5)
        o2.add_position(86, 0.5)
        o2.fulfill_time = datetime.datetime.now()

        # order 3
        o3 = MarketOrder(Type.BUY, 'AAPL', 100)
        o3.add_position(14, 0.2)
        o3.add_position(86, 0.2)
        o3.fulfill_time = datetime.datetime.now()

        e3 = threading.Event()
        listeners += lambda x: e3.set() if x[
            'type'] == 'portfolio_value_update' else None

        # historical data
        with IQFeedHistoryProvider() as provider:
            f = BarsFilter(ticker=["GOOG", "AAPL"],
                           interval_len=60,
                           interval_type='s',
                           max_bars=5)
            data = provider.request_data(f, sync_timestamps=False).swaplevel(
                0, 1).sort_index()
            dre = DataReplayEvents(listeners,
                                   DataReplay().add_source([data],
                                                           'data',
                                                           historical_depth=2),
                                   event_name='bar')

            pm = PortfolioManager(
                listeners=listeners,
                initial_capital=10000,
                fulfilled_orders_event_stream=fulfilled_orders,
                bar_event_stream=dre.event_filter_by_source('data'))

            fulfilled_orders(o1)
            fulfilled_orders(o3)

            dre.start()

            e1.wait()
            e3.wait()

        self.assertNotEqual(pm.value('GOOG'), 1)
        self.assertNotEqual(pm.value('GOOG'), 0.5)
        self.assertNotEqual(pm.value('AAPL'), 0.2)
        self.assertEqual(len(pm._values), 2)
Ejemplo n.º 13
0
    def test_price_updates(self):
        listeners = AsyncListeners()

        with IQFeedLevel1Listener(listeners=listeners,
                                  mkt_snapshot_depth=2) as level_1:
            listeners = AsyncListeners()

            fulfilled_orders = SyncListeners()

            pm = PortfolioManager(
                listeners=listeners,
                initial_capital=10000,
                tick_event_stream=level_1.all_level_1_filter(),
                fulfilled_orders_event_stream=fulfilled_orders)

            # order 1
            o1 = MarketOrder(Type.BUY, 'GOOG', 100)
            o1.add_position(14, 1)
            o1.add_position(86, 1)
            o1.fulfill_time = datetime.datetime.now()

            e1 = threading.Event()
            listeners += lambda x: e1.set() if x[
                'type'] == 'portfolio_value_update' and pm.value(
                    'GOOG') > 1 else None
            fulfilled_orders(o1)

            level_1.watch('GOOG')

            e1.wait()

            self.assertNotEqual(pm.value('GOOG'), 1)

            # order 2
            o2 = MarketOrder(Type.BUY, 'GOOG', 90)
            o2.add_position(4, 0.5)
            o2.add_position(86, 0.5)
            o2.fulfill_time = datetime.datetime.now()

            self.assertNotEqual(pm.value('GOOG'), 1)
            self.assertNotEqual(pm.value('GOOG'), 0.5)

            # order 3
            o3 = MarketOrder(Type.BUY, 'AAPL', 100)
            o3.add_position(14, 0.2)
            o3.add_position(86, 0.2)
            o3.fulfill_time = datetime.datetime.now()

            e3 = threading.Event()
            listeners += lambda x: e3.set() if x[
                'type'] == 'portfolio_value_update' and pm.value(
                    'AAPL') > 0.2 else None
            fulfilled_orders(o3)

            level_1.watch('AAPL')

            e3.wait()

            self.assertNotEqual(pm.value('GOOG'), 1)
            self.assertNotEqual(pm.value('GOOG'), 0.5)
            self.assertNotEqual(pm.value('AAPL'), 0.2)
            self.assertEqual(len(pm._values), 2)
Ejemplo n.º 14
0
    def test_1(self):
        listeners = AsyncListeners()
        fulfilled_orders = SyncListeners()

        pm = PortfolioManager(listeners=listeners,
                              initial_capital=10000,
                              fulfilled_orders_event_stream=fulfilled_orders)

        # order 1
        o1 = MarketOrder(Type.BUY, 'GOOG', 100)
        o1.add_position(14, 23)
        o1.add_position(86, 24)
        o1.fulfill_time = datetime.datetime.now()

        e1 = threading.Event()
        listeners += lambda x: e1.set()
        fulfilled_orders(o1)
        e1.wait()

        self.assertEqual(len(pm.quantity()), 1)
        self.assertEqual(pm.quantity()['GOOG'], 100)
        self.assertEqual(pm.quantity('GOOG'), 100)
        self.assertEqual(pm.value('GOOG', multiply_by_quantity=True), 100 * 24)
        self.assertEqual(len(pm.value()), 1)
        self.assertEqual(pm.value(multiply_by_quantity=True)['GOOG'], 100 * 24)
        self.assertEqual(pm.capital, 10000 - (14 * 23 + 86 * 24))

        # order 2
        o2 = MarketOrder(Type.BUY, 'GOOG', 150)
        o2.add_position(110, 25)
        o2.add_position(30, 26)
        o2.add_position(10, 27)
        o2.fulfill_time = datetime.datetime.now()

        e2 = threading.Event()
        pm.listeners += lambda x: e2.set()
        fulfilled_orders(o2)
        e2.wait()

        self.assertEqual(len(pm.quantity()), 1)
        self.assertEqual(pm.quantity()['GOOG'], 250)
        self.assertEqual(pm.quantity('GOOG'), 250)
        self.assertEqual(pm.value('GOOG', multiply_by_quantity=True), 250 * 27)
        self.assertEqual(len(pm.value()), 1)
        self.assertEqual(pm.value(multiply_by_quantity=True)['GOOG'], 250 * 27)
        self.assertEqual(
            pm.capital,
            10000 - (14 * 23 + 86 * 24 + 110 * 25 + 30 * 26 + 10 * 27))

        # order 3
        o3 = MarketOrder(Type.SELL, 'GOOG', 60)
        o3.add_position(60, 22)
        o3.fulfill_time = datetime.datetime.now()

        e3 = threading.Event()
        pm.listeners += lambda x: e3.set()
        fulfilled_orders(o3)
        e3.wait()

        self.assertEqual(len(pm.quantity()), 1)
        self.assertEqual(pm.quantity()['GOOG'], 190)
        self.assertEqual(pm.quantity('GOOG'), 190)
        self.assertEqual(pm.value('GOOG'), 22)
        self.assertEqual(len(pm.value()), 1)
        self.assertEqual(pm.value()['GOOG'], 22)
        self.assertEqual(
            pm.capital, 10000 -
            (14 * 23 + 86 * 24 + 110 * 25 + 30 * 26 + 10 * 27) + 60 * 22)

        # order 4
        o4 = MarketOrder(Type.BUY, 'AAPL', 50)
        o4.add_position(50, 21)
        o4.fulfill_time = datetime.datetime.now()

        e4 = threading.Event()
        pm.listeners += lambda x: e4.set()
        fulfilled_orders(o4)
        e4.wait()

        self.assertEqual(len(pm.quantity()), 2)
        self.assertEqual(pm.quantity()['AAPL'], 50)
        self.assertEqual(pm.quantity('AAPL'), 50)
        self.assertEqual(pm.value('AAPL', multiply_by_quantity=True), 50 * 21)
        self.assertEqual(len(pm.value()), 2)
        self.assertEqual(pm.value(multiply_by_quantity=True)['AAPL'], 50 * 21)
        self.assertEqual(
            pm.capital, 10000 -
            (14 * 23 + 86 * 24 + 110 * 25 + 30 * 26 + 10 * 27 + 50 * 21) +
            60 * 22)
    def test_request_ohlc(self):
        listeners = AsyncListeners()

        with IQFeedHistoryProvider(num_connections=2) as history:
            streaming_conn = iq.QuoteConn()
            streaming_conn.connect()

            end_prd = datetime.datetime(2017, 5, 1)

            # test single symbol request
            filters = (BarsInPeriodFilter(ticker="IBM",
                                          bgn_prd=datetime.datetime(
                                              2017, 4, 1),
                                          end_prd=end_prd,
                                          interval_len=3600,
                                          ascend=True,
                                          interval_type='s'),
                       BarsInPeriodFilter(ticker="AAPL",
                                          bgn_prd=datetime.datetime(
                                              2017, 4, 1),
                                          end_prd=end_prd,
                                          interval_len=3600,
                                          ascend=True,
                                          interval_type='s'),
                       BarsInPeriodFilter(ticker="AAPL",
                                          bgn_prd=datetime.datetime(
                                              2017, 4, 1),
                                          end_prd=end_prd,
                                          interval_len=600,
                                          ascend=True,
                                          interval_type='s'))

            update_splits_dividends(client=self._client,
                                    fundamentals=get_fundamentals(
                                        {'IBM', 'AAPL'},
                                        streaming_conn).values())
            adjusted = list()

            for f in filters:
                datum = history.request_data(f, sync_timestamps=False)
                datum.drop('timestamp', axis=1, inplace=True)
                datum['interval'] = str(f.interval_len) + '_' + f.interval_type
                self._client.write_points(datum,
                                          'bars',
                                          protocol='line',
                                          tag_columns=['symbol', 'interval'],
                                          time_precision='s')
                datum.drop('interval', axis=1, inplace=True)

                datum = history.request_data(f, sync_timestamps=False)

                adjust_df(
                    datum, get_adjustments(client=self._client,
                                           symbol=f.ticker))
                adjusted.append(datum)

                cache_requests = InfluxDBOHLCRequest(
                    client=self._client,
                    interval_len=f.interval_len,
                    interval_type=f.interval_type)
                _, test_data = cache_requests.request(symbol=f.ticker)
                adjust_df(
                    test_data,
                    get_adjustments(client=self._client, symbol=f.ticker))
                del datum['total_volume']
                del datum['number_of_trades']
                assert_frame_equal(datum, test_data)

            for datum, f in zip(adjusted, filters):
                cache_requests = InfluxDBOHLCRequest(
                    client=self._client,
                    interval_len=f.interval_len,
                    interval_type=f.interval_type)
                _, test_data = cache_requests.request(symbol=f.ticker)
                _, test_data_limit = cache_requests.request(
                    symbol=f.ticker,
                    bgn_prd=f.bgn_prd + relativedelta(days=7),
                    end_prd=f.end_prd - relativedelta(days=7))

                self.assertGreater(len(test_data_limit), 0)
                self.assertLess(len(test_data_limit), len(test_data))

            # test multisymbol request
            requested_data = history.request_data(BarsInPeriodFilter(
                ticker=["AAPL", "IBM"],
                bgn_prd=datetime.datetime(2017, 4, 1),
                end_prd=end_prd,
                interval_len=3600,
                ascend=True,
                interval_type='s'),
                                                  sync_timestamps=False)
            requested_data = requested_data.swaplevel(0, 1).sort_index()
            del requested_data['total_volume']
            del requested_data['number_of_trades']

            cache_requests = InfluxDBOHLCRequest(client=self._client,
                                                 interval_len=3600,
                                                 listeners=listeners)
            _, test_data = cache_requests.request(
                symbol=['IBM', 'AAPL', 'TSG'],
                bgn_prd=datetime.datetime(2017, 4, 1),
                end_prd=end_prd)
            assert_frame_equal(requested_data, test_data)

            # test any symbol request
            requested_data = history.request_data(BarsInPeriodFilter(
                ticker=["AAPL", "IBM"],
                bgn_prd=datetime.datetime(2017, 4, 1),
                end_prd=end_prd,
                interval_len=3600,
                ascend=True,
                interval_type='s'),
                                                  sync_timestamps=False)
            requested_data = requested_data.swaplevel(0, 1).sort_index()

            del requested_data['total_volume']
            del requested_data['number_of_trades']

            e = threading.Event()

            def listen(event):
                if event['type'] == 'cache_result':
                    assert_frame_equal(requested_data, event['data'][0])
                    e.set()

            listeners += listen

            listeners({
                'type': 'request_ohlc',
                'data': {
                    'bgn_prd': datetime.datetime(2017, 4, 1),
                    'end_prd': end_prd
                }
            })

            e.wait()

            streaming_conn.disconnect()