Ejemplo n.º 1
0
def read_data(path, dtype=np.float64, bin_factor=None, **kargs):
    """
    Read SOHO / STEREO data files and output a Data instance

    Input :

      path : path of the data set

      dtype : cast of the data array
      
      kargs : arguments of the data filtering
    """
    if not os.path.isdir(path):
        raise ValueError('Directory does not exist')
    # read files
    fnames = os.listdir(path)
    files = [pyfits.fitsopen(os.path.join(path, fname))[0] for fname in fnames]
    files = filter_files(files, **kargs)
    fits_arrays = list()
    for f in files:
        fits_array = fa.hdu2fitsarray(f)
        if bin_factor is not None:
            fits_array = fits_array.bin(bin_factor)
            fits_array.header['RSUN'] /= bin_factor
        update_header(fits_array)
        fits_arrays.append(fits_array)
    data = fa.infoarrays2infoarray(fits_arrays)
    data = data.astype(dtype)
    return data
Ejemplo n.º 2
0
 def __new__(subtype,
             shape=None,
             data=None,
             file=None,
             ext=0,
             dtype=float,
             buffer=None,
             offset=0,
             strides=None,
             order=None,
             header=None):
     # various inputs
     if shape is not None:
         obj = np.ndarray.__new__(subtype, shape, dtype, buffer, offset,
                                  strides, order)
     elif data is not None:
         obj = np.array(data).view(subtype)
     elif file is not None:
         fits = pyfits.fitsopen(file)
         obj = fits[ext].data.view(subtype)
         header = fits[ext].header
         dtype = get_dtype(header)
     # ensure minimal header is setup
     if header is None:
         header = pyfits.PrimaryHDU(obj).header
     if isinstance(header, dict):
         header = dict2header(header)
     obj.header = header
     enforce_minimal_header(obj)
     return obj
Ejemplo n.º 3
0
Archivo: fwhm.py Proyecto: RTS2/rts2
def processImage(fn,d,obs_id=None,threshold=2.7,pr=False,ds9cat=None,bysegments=False,stars=[]):
	"""Process image, print its FWHM. Works with multi extension images.
	"""
	ff = pyfits.fitsopen(fn)

	rts2 = rts2comm.Rts2Comm()

	if d:
		d.set('file mosaicimage iraf ' + fn)

	sexcols = ['X_IMAGE','Y_IMAGE','MAG_BEST','FLAGS','CLASS_STAR','FWHM_IMAGE','A_IMAGE','B_IMAGE','EXT_NUMBER','FLUX_BEST','BACKGROUND']

	c = sextractor.Sextractor(sexcols,threshold=threshold,sexconfig='/home/observer/findfwhm/Sextractor/focus.sex',starnnw='/home/observer/findfwhm/Sextractor/default.nnw')
	c.runSExtractor(fn)
	c.sortObjects(2)

	for st in stars:
		# append distance - none and star number - to star list
		st.append(None)
		st.append(None)

	# dump Sextractor to DS9 catalogue
	if ds9cat:
		cat = open(ds9cat,'w')
		cat.write('\t'.join(sexcols) + '\n')
		for x in c.objects:
			cat.write('\t'.join(map(lambda y:str(y),x)) + '\n')
		cat.close()

	seg_fwhms = map(lambda x:FWHM(),range(0,len(ff)+1))
	for x in c.objects:
		if pr:
			print '\t'.join(map(lambda y:str(y),x))
		segnum = int(x[8])
		for st in stars:
			if st[0] == segnum:
				dist = math.sqrt((x[0]-st[1])**2+(x[1]-st[2])**2)
				if st[4] is None or st[4] > dist:
					st[4] = dist
					st[5] = x

		if x[3] == 0 and x[4] != 0:
			if d:
				d.set('regions','tile {0}\nimage; circle {1} {2} 10 # color=green'.format(segnum,x[0],x[1]))
			
			seg_fwhms[0].addFWHM(x[5],x[6],x[7])
			seg_fwhms[segnum].addFWHM(x[5],x[6],x[7])
		elif d:
			d.set('regions','# tile {0}\nphysical; point {1} {2} # point = x 5 color=red'.format(segnum,x[0],x[1]))

	# average results
	map(FWHM.average,seg_fwhms)
  	# default suffix
	defsuffix = '_KCAM'
	try:
		defsuffix = '_' + ff[0].header['CCD_NAME']
	except KeyError,er:
		pass
Ejemplo n.º 4
0
def read_fits_array(filename, ext=0):
    """Reads a fits file and output a FitsArray
    """
    fits = pyfits.fitsopen(filename)
    header = fits[ext].header
    dtype = get_dtype(header)
    data = fits[ext].data.astype(dtype)
    fits_array = FitsArray(data=data, header=header, dtype=dtype)
    return fits_array
Ejemplo n.º 5
0
def update_header(filename, ext, rec, val):
    """
    Update value in an fits header
    """
    fits = pyfits.fitsopen(filename, "update")
    for e in ext:
        for r, v in zip(rec, val):
            fits[e].header.update(r, v)
    fits.flush()
Ejemplo n.º 6
0
def read_fits_array(filename, ext=0):
    """Reads a fits file and output a FitsArray
    """
    fits = pyfits.fitsopen(filename)
    header = fits[ext].header
    dtype = get_dtype(header)
    data = fits[ext].data.astype(dtype)
    fits_array = FitsArray(data=data, header=header, dtype=dtype)
    return fits_array
Ejemplo n.º 7
0
def update_header(filename, ext, rec, val):
    """
    Update value in an fits header
    """
    fits = pyfits.fitsopen(filename, "update")
    for e in ext:
        for r, v in zip(rec, val):
            fits[e].header.update(r, v)
    fits.flush()
Ejemplo n.º 8
0
def median(of,files):
	"""Computes normalized median of files."""
	f = pyfits.fitsopen(files[0])
	d = numpy.empty([len(files),len(f[0].data),len(f[0].data[0])])
	avrg = numpy.mean(f[0].data)
	d[0] = f[0].data / avrg
	for x in range(1,len(files)):
	  	f = pyfits.fitsopen(files[x])
		avrg = numpy.mean(f[0].data)
		d[x] = f[0].data / avrg
	if (os.path.exists(of)):
	  	print "removing " + of
		os.unlink(of)
	f = pyfits.open(of,mode='append')
	m = numpy.median(d,axis=0)
	i = pyfits.PrimaryHDU(data=m)
	f.append(i)
	print 'writing %s of mean: %f std: %f median: %f' % (of,numpy.mean(m), numpy.std(m), numpy.median(numpy.median(m)))
	f.close()
Ejemplo n.º 9
0
def mrdfits(filename, extension=1, transpose=False, verbose=False):
    """
    Read a an extended fits file.
    Try to emulate mrdfits.pro

    Arguments
    ---------
    filename: string
    extension: int
    transpose: bool
    verbose: bool

    Returns
    -------
    A dictionary of arrays

    """
    if verbose:
        print 'extension = ', extension
    # load data
    fits = pyfits.fitsopen(filename)
    hdu = fits[extension]
    data = hdu.data
    if not (isinstance(hdu, pyfits.BinTableHDU)
            or isinstance(hdu, pyfits.TableHDU)):
        # this is an "image"
        return data
    # else this is a table (ASCII or Binary)
    header = hdu.header
    #  create dictionnary
    mydict = dict.fromkeys(data._names)
    # beware order is not kept
    # fill the dictionnary
    for i, name in enumerate(data._names):
        mydim = "tdim{0}".format(i + 1)
        if header.has_key(mydim):
            myshape = header[mydim]
            # n = [int(i) for i in header.strip('()').split(',')]
            exec('myshape = ' + header[mydim])
            # need to reverse shape due to FITS convention
            # (quick axis first in FITS and last in Python)
            myshape = myshape[::-1]
            mydict[name] = data.field(name).reshape(myshape)
            if transpose:
                mydict[name] = mydict[name].transpose()
        else:
            mydict[name] = data.field(name).ravel()
    #
    # check
    if verbose:
        for k, v in mydict.iteritems():
            print k, v[0:1]
    #
    return mydict
Ejemplo n.º 10
0
def mrdfits(filename, extension=1, transpose=False, verbose=False):
    """
    Read a an extended fits file.
    Try to emulate mrdfits.pro

    Arguments
    ---------
    filename: string
    extension: int
    transpose: bool
    verbose: bool

    Returns
    -------
    A dictionary of arrays

    """
    if verbose:
        print 'extension = ', extension
    # load data
    fits = pyfits.fitsopen(filename)
    hdu = fits[extension]
    data = hdu.data
    if not (isinstance(hdu, pyfits.BinTableHDU)
            or isinstance(hdu, pyfits.TableHDU)):
        # this is an "image"
        return data
    # else this is a table (ASCII or Binary)
    header = hdu.header
    #  create dictionnary
    mydict = dict.fromkeys(data._names)
    # beware order is not kept
    # fill the dictionnary
    for i, name in enumerate(data._names):
       mydim = "tdim{0}".format(i+1)
       if header.has_key(mydim):
           myshape = header[mydim]
           # n = [int(i) for i in header.strip('()').split(',')]
           exec('myshape = ' + header[mydim])
           # need to reverse shape due to FITS convention
           # (quick axis first in FITS and last in Python)
           myshape = myshape[::-1]
           mydict[name] = data.field(name).reshape(myshape)
           if transpose:
               mydict[name] = mydict[name].transpose()
       else:
           mydict[name] = data.field(name).ravel()
    #
    # check
    if verbose:
        for k, v in mydict.iteritems():
            print k, v[0:1]
    #
    return mydict
Ejemplo n.º 11
0
def fitsfilter(filenames, test_str, ext=0):
    """
    Filter a list of fits filenames checking a test string.

    Arguments:
    ----------
    filenames: (list of strings)
    list of string corresponding to fits filenames.

    test_str: (string)
    a test string of the form :

    (a[NAXIS] == 3 and a[NAXIS1] == 1024) or a[NAXIS2] == 2

    Returns:
    --------
    out_files: (list of strings)
    list of string corresponding to fits filenames verifying the test.

    Notes:
    ------
    The use of 
    """
    out_files = list()
    # parse filenames
    for f in filenames:
        test = True
        try:
            a = pyfits.fitsopen(f)[ext].header
        # file does not exist
        except IOError:
            test = False
        # extension does not exist
        except IndexError:
            test = False
        if "a" in locals():
            try:
                test_str = add_quotes_to_str(test_str)
                test_str = add_quotes_to_keys(test_str)
                exec_str = " ".join(("if", "not", "(" + test_str + "):", "test = False"))
                exec (exec_str)
            # one of the key does not exist
            except KeyError:
                test = False
            if test:
                out_files.append(f)
    return out_files
Ejemplo n.º 12
0
def file_to_config(filename, config_filename=None):
    """
    Convert info from header into configuration for srt inversion.

    Arguments
    ---------

    filename (str):
      The filename of the fits file (output of srt).

    config_filename (str, optional):
      If provided, the config is saved into this file.

    Returns
    -------

    config (ConfigParser.RawConfigParser instance): A configuration
      instance, only if config_filename is not provided.
    """
    import pyfits
    import ConfigParser
    # read data
    h = dict(pyfits.fitsopen(filename)[0].header)
    # convert to dictionaries
    obj_params, data_params, opt_params, mask_params = params_from_header(h)
    # generate config
    config = ConfigParser.RawConfigParser()
    # define sections
    config.add_section("object")
    config.add_section("data")
    config.add_section("masking")
    config.add_section("optimization")
    # fill in sections
    for k in obj_params:
        config.set("object", k, obj_params[k])
    for k in data_params:
        config.set("data", k, data_params[k])
    for k in opt_params:
        config.set("optimization", k, opt_params[k])
    for k in mask_params:
        config.set("masking", k, mask_params[k])
    if config_filename is not None:
        fp = file(config_filename, "w")
        config.write(fp)
        fp.close()
    return config
Ejemplo n.º 13
0
def file_to_config(filename, config_filename=None):
    """
    Convert info from header into configuration for srt inversion.

    Arguments
    ---------

    filename (str):
      The filename of the fits file (output of srt).

    config_filename (str, optional):
      If provided, the config is saved into this file.

    Returns
    -------

    config (ConfigParser.RawConfigParser instance): A configuration
      instance, only if config_filename is not provided.
    """
    import pyfits
    import ConfigParser
    # read data
    h = dict(pyfits.fitsopen(filename)[0].header)
    # convert to dictionaries
    obj_params, data_params, opt_params, mask_params = params_from_header(h)
    # generate config
    config = ConfigParser.RawConfigParser()
    # define sections
    config.add_section("object")
    config.add_section("data")
    config.add_section("masking")
    config.add_section("optimization")
    # fill in sections
    for k in obj_params:
        config.set("object", k, obj_params[k])
    for k in data_params:
        config.set("data", k, data_params[k])
    for k in opt_params:
        config.set("optimization", k, opt_params[k])
    for k in mask_params:
        config.set("masking", k, mask_params[k])
    if config_filename is not None:
        fp = file(config_filename, "w")
        config.write(fp)
        fp.close()
    return config
Ejemplo n.º 14
0
def read_data(path, dtype=np.float64, bin_factor=None, **kargs):
    """
    Read SOHO / STEREO data files and output a Data instance

    Input :

      path : path of the data set

      dtype : cast of the data array
      
      kargs : arguments of the data filtering
    """
    if not os.path.isdir(path):
        raise ValueError('Directory does not exist')
    # read files
    fnames = os.listdir(path)
    files = list()
    for fname in fnames:
        try:
            files.append(pyfits.fitsopen(os.path.join(path, fname))[0])
        except (IOError):
            pass
    files = filter_files(files, **kargs)
    if len(files) == 0:
        print("No file matching.")
        return None
    for i, f in enumerate(files):
        fits_array = fa.hdu2fitsarray(f)
        if bin_factor is not None:
            fits_array = fits_array.bin(bin_factor)
        update_header(fits_array)
        fits_array = fits_array.T
        if i == 0:
            data = fa.InfoArray(fits_array.shape + (len(files), ),
                                header=[
                                    dict(fits_array.header),
                                ])
        data[..., i] = fits_array
        if i != 0:
            data.header.append(dict(fits_array.header))
    # ensure coherent data type
    data = data.astype(dtype)
    for i in xrange(data.shape[-1]):
        data.header[i]['BITPIX'] = fa.bitpix_inv[dtype.__name__]
    return data
Ejemplo n.º 15
0
def filtersort(of,files):
	# sort by filters..
	flats = {}
	for x in files:
	  	f = pyfits.fitsopen(x)
		filt = f[0].header['FILTER']
		try:
			flats[filt].append(x)
		except KeyError:
			flats[filt] = [x]
		print '\rflats ',
		for y in flats.keys():
		  	print '%s : %03d' % (y,len(flats[y])),

	for x in flats.keys():
		print ''
		print 'processing filter %s with %d images' % (x,len(flats[x]))
		median(of + x + '.fits', flats[x])
Ejemplo n.º 16
0
def show_fits(filename, ext=None, outfile=None):
    # imports
    import matplotlib.pylab as mp
    import pyfits
    # open file
    fits = pyfits.fitsopen(filename)
    if ext is None:
        # display the first image-like extension
        for e in xrange(len(fits)):
            a = fits[e].data
            if a.ndim == 2:
                break
    else:
        a = fits[ext].data
    mp.imshow(a)
    if outfile is None:
        mp.show()
    else:
        mp.savefig(outfile)
Ejemplo n.º 17
0
def show_fits(filename, ext=None, outfile=None):
    # imports
    import matplotlib.pylab as mp
    import pyfits
    # open file
    fits = pyfits.fitsopen(filename)
    if ext is None:
        # display the first image-like extension
        for e in xrange(len(fits)):
            a = fits[e].data
            if a.ndim == 2:
                break
    else:
        a = fits[ext].data
    mp.imshow(a)
    if outfile is None:
        mp.show()
    else:
        mp.savefig(outfile)
Ejemplo n.º 18
0
def read_data(path, dtype=np.float64, bin_factor=None, **kargs):
    """
    Read SOHO / STEREO data files and output a Data instance

    Input :

      path : path of the data set

      dtype : cast of the data array
      
      kargs : arguments of the data filtering
    """
    if not os.path.isdir(path):
        raise ValueError('Directory does not exist')
    # read files
    fnames = os.listdir(path)
    files = list()
    for fname in fnames:
        try:
            files.append(pyfits.fitsopen(os.path.join(path, fname))[0])
        except(IOError):
            pass
    files = filter_files(files, **kargs)
    if len(files) == 0:
        print("No file matching.")
        return None
    for i, f in enumerate(files):
        fits_array = fa.hdu2fitsarray(f)
        if bin_factor is not None:
            fits_array = fits_array.bin(bin_factor)
        update_header(fits_array)
        fits_array = fits_array.T
        if i == 0:
            data = fa.InfoArray(fits_array.shape + (len(files),), header=[dict(fits_array.header),])
        data[..., i] = fits_array
        if i != 0:
            data.header.append(dict(fits_array.header))
    # ensure coherent data type
    data = data.astype(dtype)
    for i in xrange(data.shape[-1]):
        data.header[i]['BITPIX'] = fa.bitpix_inv[dtype.__name__]
    return data
Ejemplo n.º 19
0
def print_header(filename, ext=None, rec=None):
    """
    Print header to standard output.

    Arguments
    ---------
    fits : string
      The filename of a fits file.
    ext : optional int (default: None)
      The extension number. If not given, print all extensions.
    rec: optional string (default: None)
      Record names to look up. If not given, print all records.

    Returns
    -------
    Nothing. Prints header to standard output.
    """
    # load file
    try:
        fits = pyfits.fitsopen(filename)
    except (IOError):
        print("File " + filename + " not a fits file or does not exist.")
        return
    # check extension
    n_ext = len(fits)
    if len(ext) == 0:
        ext = xrange(n_ext)
    # print headers
    for e in ext:
        if isinstance(ext, xrange) and not n_ext == 1:
            print("-" * LINE_WIDTH)
            print("Extension number " + str(e))
            print("-" * LINE_WIDTH)
        # check records
        replace_rec = False
        if len(rec) == 0:
            crec = fits[e].header.keys()
        else:
            crec = rec
        for r in crec:
            print(r + " " * (KEY_WIDTH - len(r)) + '\t' +
                  str(fits[e].header[r]))
Ejemplo n.º 20
0
def print_header(filename, ext=None, rec=None):
    """
    Print header to standard output.

    Arguments
    ---------
    fits : string
      The filename of a fits file.
    ext : optional int (default: None)
      The extension number. If not given, print all extensions.
    rec: optional string (default: None)
      Record names to look up. If not given, print all records.

    Returns
    -------
    Nothing. Prints header to standard output.
    """
    # load file
    try:
        fits = pyfits.fitsopen(filename)
    except(IOError):
        print("File " + filename + " not a fits file or does not exist.")
        return
    # check extension
    n_ext = len(fits)
    if len(ext) == 0:
        ext = xrange(n_ext)
    # print headers
    for e in ext:
        if isinstance(ext, xrange) and not n_ext==1:
            print("-" * LINE_WIDTH)
            print("Extension number " + str(e))
            print("-" * LINE_WIDTH)
        # check records
        replace_rec = False
        if len(rec) == 0:
            crec = fits[e].header.keys()
        else:
            crec = rec
        for r in crec:
            print(r + " " * (KEY_WIDTH - len(r)) +'\t' + str(fits[e].header[r]))
Ejemplo n.º 21
0
 def __new__(subtype, shape=None, data=None, file=None, ext=0, dtype=float, buffer=None, offset=0,
             strides=None, order=None, header=None):
     # various inputs
     if shape is not None:
         obj = np.ndarray.__new__(subtype, shape, dtype, buffer, offset,
                                  strides, order)
     elif data is not None:
         obj = np.array(data).view(subtype)
     elif file is not None:
         fits = pyfits.fitsopen(file)
         obj = fits[ext].data.view(subtype)
         header = fits[ext].header
         dtype = get_dtype(header)
     # ensure minimal header is setup
     if header is None:
         header = pyfits.PrimaryHDU(obj).header
     if isinstance(header, dict):
         header = dict2header(header)
     obj.header = header
     enforce_minimal_header(obj)
     return obj
Ejemplo n.º 22
0
#!/usr/bin/python

# Test focusing infrastrucure

import focusing
import sys
import pyfits

from scipy import *
from pylab import *

tries = {}

for fn in sys.argv[1:]:
	ff = pyfits.fitsopen(fn)
	tries[float(ff[0].header['FOC_POS'])]=fn

f = focusing.Focusing()

b,ftype = f.findBestFWHM(tries)
# for way off-focus, low S/N images..
#b,ftype = f.findBestFWHM(tries,min_stars=10,filterGalaxies=False,threshold=5)

print b

f.plotFit(b,ftype)
Ejemplo n.º 23
0
    def __init__(self, todfile, invnttfile, mapmaskfile, convert, ndetectors,
                 missing_value=None, comm_tod=None):

        # Get information from files
        nslices, status = tmf.madmap1_nslices(invnttfile, ndetectors)
        if status != 0: raise RuntimeError()
        npixels_per_sample, nsamples, ncorrelations, status = tmf.madmap1_info(\
            todfile, invnttfile, convert, ndetectors, nslices)
        if status != 0: raise RuntimeError()

        m=re.search(r'(?P<filename>.*)\[(?P<extname>\w+)\]$', mapmaskfile)
        if m is None:
            mask = pyfits.fitsopen(mapmaskfile)[0].data
        else:
            filename = m.group('filename')
            extname  = m.group('extname')
            mask = pyfits.fitsopen(filename)[extname].data
        if mask is None:
            raise IOError('HDU '+mapmaskfile+' has no data.')
        mapmask = np.zeros(mask.shape, dtype='int8')
        if missing_value is None:
            mapmask[mask != 0] = 1
        elif np.isnan(missing_value):
            mapmask[np.isnan(mask)] = 1
        elif np.isinf(missing_value):
            mapmask[np.isinf(mask)] = 1
        else:
            mapmask[mask == missing_value] = 1

        # Store instrument information
        self.instrument = Instrument('Unknown', (ndetectors,))

        # Store observation information
        class MadMap1ObservationInfo(object):
            pass
        self.info = MadMap1ObservationInfo()
        self.info.todfile = todfile
        self.info.invnttfile = invnttfile
        self.info.ncorrelations = ncorrelations
        self.info.npixels_per_sample = npixels_per_sample
        self.info.mapmaskfile = mapmaskfile
        self.info.convert = convert
        self.info.missing_value = missing_value
        self.info.mapmask = mapmask

        # Store slice information
        self.slice = np.recarray(nslices, dtype=[('nsamples_all', int),
                                                 ('invnttfile', 'S256')])
        self.slice.nsamples_all = nsamples
        self.slice.nfinesamples = nsamples
        self.slice.invnttfile = [invnttfile+'.'+str(i) for i in range(nslices)]

        # Store pointing information
        self.pointing = np.recarray(np.sum(nsamples), [('removed', np.bool_)])
        self.pointing.removed = False

        # Store communicator information
        self.comm_tod = comm_tod or var.comm_tod
        if self.comm_tod.Get_size() > 1:
            raise NotImplementedError('The parallelisation of the TOD is not ' \
                                      'implemented')
Ejemplo n.º 24
0
#labels, nlabels = ndi.measurements.label(roi)
# select biggest region
#region_size = [np.sum(labels == i) for i in xrange(1, nlabels)]
#biggest_index = np.where(region_size == np.max(region_size))[0][0] + 1
#roi = labels == biggest_index
roi = np.ones((192, 192))

# intiat list of radial profiles
phot_tables = []
pix_tables = []
p = []
datas = []
headers = []
for i, filename in enumerate(filenames):
    # read data
    p.append(pyfits.fitsopen(filename)[0])
    datas.append(np.ma.MaskedArray(p[-1].data.T, mask=(1 - roi)))
    if i==0:
        # backprojection normalize
        datas[-1] /= 8
    headers.append(p[-1].header)
    # run radial_profile
    radii, phot_table, pix_table = radial_profile(datas[-1], headers[-1],
                                                  center, incl, pa)
    phot_tables.append(phot_table)
    pix_tables.append(pix_table)

# compute background
bkg_roi = np.zeros(datas[0].shape, dtype=np.bool8)
bkg_roi[0:40, 0:50] = 1.
bkg_roi[0:50, 150:-1] = 1.
Ejemplo n.º 25
0
#!/usr/bin/env python
import getopt, sys, os
import numpy as np
import pyfits
from pylab import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid.inset_locator import zoomed_inset_axes
from mpl_toolkits.axes_grid.inset_locator import mark_inset

#fname_ext = '/home/nbarbey/data/csh/output/ngc6946_cross_robust.fits'
fname_ext = sys.argv[1]
fname = fname_ext.split('.')[0]
out_fname = fname + '.png'
print('displaying ' + fname)
title_str = fname.split(os.sep)[-1]
t = np.flipud(pyfits.fitsopen(fname_ext)[0].data.T)
fig = plt.figure(1, [5,4])
ax = fig.add_subplot(111)

#imshow(t , interpolation="nearest")
#imshow((t - t.min())) ** .25, interpolation="nearest")
tt = t ** .25
tt[np.isnan(tt)] = 0
extent = [0., 192., 0., 192.]
ax.imshow(tt, extent=extent, interpolation="nearest")

tzoom = tt[135:155, 80:100,]
axins = zoomed_inset_axes(ax, 2, loc=3) # zoom = 6
extent = [80., 100., 192. - 155., 192. - 135, ]
im = axins.imshow(tzoom, extent=extent, interpolation="nearest")
im.set_clim([tt.min(), tt.max()])
Ejemplo n.º 26
0
    def __init__(self,
                 todfile,
                 invnttfile,
                 mapmaskfile,
                 convert,
                 ndetectors,
                 missing_value=None,
                 comm_tod=None):

        # Get information from files
        nslices, status = tmf.madmap1_nslices(invnttfile, ndetectors)
        if status != 0: raise RuntimeError()
        npixels_per_sample, nsamples, ncorrelations, status = tmf.madmap1_info(\
            todfile, invnttfile, convert, ndetectors, nslices)
        if status != 0: raise RuntimeError()

        m = re.search(r'(?P<filename>.*)\[(?P<extname>\w+)\]$', mapmaskfile)
        if m is None:
            mask = pyfits.fitsopen(mapmaskfile)[0].data
        else:
            filename = m.group('filename')
            extname = m.group('extname')
            mask = pyfits.fitsopen(filename)[extname].data
        if mask is None:
            raise IOError('HDU ' + mapmaskfile + ' has no data.')
        mapmask = np.zeros(mask.shape, dtype='int8')
        if missing_value is None:
            mapmask[mask != 0] = 1
        elif np.isnan(missing_value):
            mapmask[np.isnan(mask)] = 1
        elif np.isinf(missing_value):
            mapmask[np.isinf(mask)] = 1
        else:
            mapmask[mask == missing_value] = 1

        # Store instrument information
        self.instrument = Instrument('Unknown', (ndetectors, ))

        # Store observation information
        class MadMap1ObservationInfo(object):
            pass

        self.info = MadMap1ObservationInfo()
        self.info.todfile = todfile
        self.info.invnttfile = invnttfile
        self.info.ncorrelations = ncorrelations
        self.info.npixels_per_sample = npixels_per_sample
        self.info.mapmaskfile = mapmaskfile
        self.info.convert = convert
        self.info.missing_value = missing_value
        self.info.mapmask = mapmask

        # Store slice information
        self.slice = np.recarray(nslices,
                                 dtype=[('nsamples_all', int),
                                        ('invnttfile', 'S256')])
        self.slice.nsamples_all = nsamples
        self.slice.nfinesamples = nsamples
        self.slice.invnttfile = [
            invnttfile + '.' + str(i) for i in range(nslices)
        ]

        # Store pointing information
        self.pointing = np.recarray(np.sum(nsamples), [('removed', np.bool_)])
        self.pointing.removed = False

        # Store communicator information
        self.comm_tod = comm_tod or var.comm_tod
        if self.comm_tod.Get_size() > 1:
            raise NotImplementedError('The parallelisation of the TOD is not ' \
                                      'implemented')
Ejemplo n.º 27
0
#!/usr/bin/env python
import pyfits
from pylab import matplotlib
from matplotlib.pyplot import *
from numpy import *
import getopt, sys, os

fname_ext = sys.argv[1]
fname = fname_ext.split(".")[0]
out_fname = fname + ".png"
print("displaying " + fname)
title_str = fname.split(os.sep)[-1]
t = pyfits.fitsopen(fname_ext)[0].data
h = figure()
# imshow(flipud(t.T) , interpolation="nearest")
# imshow(flipud(t.T) ** .25, interpolation="nearest")
imshow(flipud((t - t.min()).T) ** 0.25, interpolation="nearest")
colorbar()
title(title_str)
xlabel("Right Ascension")
ylabel("Declination")
show()
h.savefig(out_fname)
Ejemplo n.º 28
0
Archivo: xy2wcs.py Proyecto: RTS2/rts2
#!/usr/bin/python

# test xy2wcs - compares what we get using ds9 and xy2wcs algorithm

from rts2.astrometry import xy2wcs
import sys
import ds9
import pyfits
import re

d=ds9.ds9('XY2WCS')

for x in sys.argv[1:]:
	ff = pyfits.fitsopen(x,'readonly')
	fh=ff[0].header
	ff.close()
	d.set('file {0}'.format(x))
	d.set('regions system wcs')
	xmax = fh['NAXIS1']
	ymax = fh['NAXIS2']
	# pixels to check
	xy = [[0,0],[0,ymax],[xmax,0],[xmax,ymax],[xmax/2.0,ymax/2.0]]
	pmatch = re.compile('point\(([^,]*),([^)]*)\)')
	for p in xy:
		d.set('regions delete all')
		d.set('regions','image; point {0} {1} # point=cross'.format(p[0],p[1]))
		r=d.get('regions')
		radec = xy2wcs(p[0],p[1],fh)
		for l in r.split('\n'):
			match = pmatch.match(l)
			if match:
Ejemplo n.º 29
0
#!/usr/bin/python

# test xy2wcs - compares what we get using ds9 and xy2wcs algorithm

from rts2.astrometry import xy2wcs
import sys
import ds9
import pyfits
import re

d = ds9.ds9('XY2WCS')

for x in sys.argv[1:]:
    ff = pyfits.fitsopen(x, 'readonly')
    fh = ff[0].header
    ff.close()
    d.set('file {0}'.format(x))
    d.set('regions system wcs')
    xmax = fh['NAXIS1']
    ymax = fh['NAXIS2']
    # pixels to check
    xy = [[0, 0], [0, ymax], [xmax, 0], [xmax, ymax], [xmax / 2.0, ymax / 2.0]]
    pmatch = re.compile('point\(([^,]*),([^)]*)\)')
    for p in xy:
        d.set('regions delete all')
        d.set('regions',
              'image; point {0} {1} # point=cross'.format(p[0], p[1]))
        r = d.get('regions')
        radec = xy2wcs(p[0], p[1], fh)
        for l in r.split('\n'):
            match = pmatch.match(l)
Ejemplo n.º 30
0
#!/usr/bin/python

# Test focusing infrastrucure

import focusing
import sys
import pyfits

from scipy import *
from pylab import *

tries = {}

for fn in sys.argv[1:]:
    ff = pyfits.fitsopen(fn)
    tries[float(ff[0].header['FOC_POS'])] = fn

f = focusing.Focusing()

b, ftype = f.findBestFWHM(tries)
# for way off-focus, low S/N images..
#b,ftype = f.findBestFWHM(tries,min_stars=10,filterGalaxies=False,threshold=5)

print b

f.plotFit(b, ftype)
Ejemplo n.º 31
0
#!/usr/bin/env python
import numpy as np
import pyfits
import os
import fht
import pylab as pl
from mpl_toolkits.axes_grid import AxesGrid

# data
datadir = os.getenv('CSH_DATA')
filename = datadir + '/../lowfreq/1342182424_blue_level0Frames.fits'

data = pyfits.fitsopen(filename)[1].data[..., 50000:60000]
idx = 2000

im0 = data[..., idx].copy()
m = np.mean(data, axis=-1)
for i in xrange(data.shape[-1]):
    data[..., i] -= m

im = data[..., idx]
im_fht = fht.fht(im0)
im_fht[0, 0] = 0.

# figure
fig = pl.figure()
pl.gray()
grid = AxesGrid(fig, 111, nrows_ncols=(3, 1),
                axes_pad=0.0,
                share_all=True,
#                cbar_mode="each",
Ejemplo n.º 32
0
class TestFailure(Exception): pass

tamasis.var.verbose = True
path = os.path.abspath(os.path.dirname(__file__)) + '/data/madmap1/'
obs = MadMap1Observation(path+'todSpirePsw_be', path+'invnttSpirePsw_be', 
                         path+'madmapSpirePsw.fits[coverage]', 'big_endian',
                         135, missing_value=np.nan)
obs.instrument.name = 'SPIRE/PSW'

tod = obs.get_tod(unit='Jy/beam')
projection = Projection(obs)
packing = Unpacking(obs.info.mapmask, field=np.nan).T

map_naive = mapper_naive(tod, projection)
map_naive = mapper_naive(tod, projection*packing)
map_ref = pyfits.fitsopen(path+'naivemapSpirePsw.fits')['image'].data
if any_neq(map_naive,map_ref): raise TestFailure('mapper_naive madcap 1')

map_naive_1d = mapper_naive(tod, projection)
map_naive_2d = packing.T(map_naive_1d)
if any_neq(map_naive_2d, map_ref): raise TestFailure('mapper_naive madcap 2')

packing = Unpacking(obs.info.mapmask).T

#M = 1 / map_naive.coverage
#M[~np.isfinite(M)] = np.max(M[np.isfinite(M)])
#map_rlsw1 = mapper_rls(tod, projection*packing, padding.T * fft.T * invNtt * fft * padding, hyper=0, tol=1.e-5, M=M, solver=cg)
#print('Elapsed time: ' + str(map_rlsw1.header['time']))

M = Diagonal(packing(1/map_naive.coverage))
if np.any(~np.isfinite(M.data)):
Ejemplo n.º 33
0
def processImage(fn,
                 d,
                 obs_id=None,
                 threshold=2.7,
                 pr=False,
                 ds9cat=None,
                 bysegments=False,
                 stars=[]):
    """Process image, print its FWHM. Works with multi extension images.
	"""
    ff = pyfits.fitsopen(fn)

    rts2 = rts2comm.Rts2Comm()

    if d:
        d.set('file mosaicimage iraf ' + fn)

    sexcols = [
        'X_IMAGE', 'Y_IMAGE', 'MAG_BEST', 'FLAGS', 'CLASS_STAR', 'FWHM_IMAGE',
        'A_IMAGE', 'B_IMAGE', 'EXT_NUMBER', 'FLUX_BEST', 'BACKGROUND'
    ]

    c = sextractor.Sextractor(
        sexcols,
        threshold=threshold,
        sexconfig='/home/observer/findfwhm/Sextractor/focus.sex',
        starnnw='/home/observer/findfwhm/Sextractor/default.nnw')
    c.runSExtractor(fn)
    c.sortObjects(2)

    for st in stars:
        # append distance - none and star number - to star list
        st.append(None)
        st.append(None)

    # dump Sextractor to DS9 catalogue
    if ds9cat:
        cat = open(ds9cat, 'w')
        cat.write('\t'.join(sexcols) + '\n')
        for x in c.objects:
            cat.write('\t'.join(map(lambda y: str(y), x)) + '\n')
        cat.close()

    seg_fwhms = map(lambda x: FWHM(), range(0, len(ff) + 1))
    for x in c.objects:
        if pr:
            print '\t'.join(map(lambda y: str(y), x))
        segnum = int(x[8])
        for st in stars:
            if st[0] == segnum:
                dist = math.sqrt((x[0] - st[1])**2 + (x[1] - st[2])**2)
                if st[4] is None or st[4] > dist:
                    st[4] = dist
                    st[5] = x

        if x[3] == 0 and x[4] != 0:
            if d:
                d.set(
                    'regions',
                    'tile {0}\nimage; circle {1} {2} 10 # color=green'.format(
                        segnum, x[0], x[1]))

            seg_fwhms[0].addFWHM(x[5], x[6], x[7])
            seg_fwhms[segnum].addFWHM(x[5], x[6], x[7])
        elif d:
            d.set(
                'regions',
                '# tile {0}\nphysical; point {1} {2} # point = x 5 color=red'.
                format(segnum, x[0], x[1]))

    # average results
    map(FWHM.average, seg_fwhms)
    # default suffix
    defsuffix = '_KCAM'
    try:
        defsuffix = '_' + ff[0].header['CCD_NAME']
    except KeyError, er:
        pass
Ejemplo n.º 34
0
#!/usr/bin/env python
import os
import numpy as np
import pyfits

version = '1.0.3'
filename = os.path.join(os.getenv('HOME'), 'projets', 'tamasis-' + version,
                        'pacs', 'data', 'PCalPhotometer_BadPixelMask_FM_v5.fits')
# save a backup
os.system('cp ' + filename + ' ' + filename + '.bak')
# load file
fits = pyfits.fitsopen(filename)
# put zeros into data
for f in fits[1:]:
    f.data = np.zeros(f.data.shape)
# remove old file
os.system('rm -f ' + filename)
# save file
fits.writeto(filename)
Ejemplo n.º 35
0
    data_path + 'ngc6946_cross_robust_noc.fits',
    data_path + 'ngc6946_cross_robust_ca.fits',
    data_path + 'ngc6946_cross_robust_cs.fits',
    data_path + 'ngc6946_cross_robust.fits',
]
letters = ['a', 'b', 'c', 'd', 'e']
letters = ['(' + l + ')' for l in letters]
markers = ['-o', '-v', '-s', '-p', '-*']
out_fname = data_path + 'ngc6946_cross_robust_line_cut_grid' + '.png'

# create grid
# figure
fig = plt.figure()

labels = ['PL', 'PLI', 'ACI', 'HCI', 'NOC']
labels = ['(' + l + ')' for l in labels]

# loop on each map
for i, fname in enumerate(fname_ext):
    data = np.flipud(pyfits.fitsopen(fname)[0].data.T)
    if i == 0:
        data /= 8.
    data[np.isnan(data)] = 0
    plt.plot(linear_cut(data, xmin=153, xmax=136, ymin=85, ymax=95, N=20),
             markers[i],
             label=labels[i])

plt.legend()
plt.show()
fig.savefig(out_fname)
Ejemplo n.º 36
0
	       
        # cleanup
        shutil.rmtree(self.odir)

	return ret

if __name__ == '__main__':
    if len(sys.argv) <= 2:
        print 'Usage: %s <odir> <fits filename> <xoffs> <yoffs> <origname> <obs_id> <imgid>' % (sys.argv[0])
        sys.exit(1)

    a = imgAstrometryScript(sys.argv[2],sys.argv[1])

    ra = dec = None

    ff=pyfits.fitsopen(sys.argv[2],'readonly')
    ra=ff[0].header['RA']
    dec=ff[0].header['DEC']
    object=ff[0].header['OBJECT']
    ff.close()

    xoffs = 0
    yoffs = 0

    if len(sys.argv) >= 5:
	xoffs = float(sys.argv[3])
	yoffs = float(sys.argv[4])

    num = -1
    try:
    	    fn = os.path.basename(sys.argv[5])
Ejemplo n.º 37
0
             ]
letters = ['a', 'b', 'c', 'd', 'e']
letters = ['(' + l + ')' for l in letters]
out_fname = data_path + 'ngc6946_cross_robust_maps_grid' + '.png'

# create grid
# figure
#plt.gray()
fig = plt.figure()
grid = AxesGrid(fig, 111, nrows_ncols=(3, 2),
                axes_pad=0.0,
                share_all=True,
                )
# loop on each map
for i, fname in enumerate(fname_ext):
    data = np.flipud(pyfits.fitsopen(fname)[0].data.T)
    if i == 0:
        data /= 8.
    data = data ** .25
    data[np.isnan(data)] = 0
    extent = [0., 192., 0., 192.]
    im = grid[i].imshow(data, extent=extent, interpolation="nearest")
    grid[i].text(10, 170, letters[i], fontsize=20, color="white")
    data_zoom = data[135:155, 80:100,]
    axins = zoomed_inset_axes(grid[i], 2, loc=3) # zoom = 6
    extent = [80., 100., 192. - 155., 192. - 135, ]
    im2 = axins.imshow(data_zoom, extent=extent, interpolation="nearest")
    im2.set_clim([data.min(), data.max()])
    plt.xticks(visible=False)
    plt.yticks(visible=False)
    im.set_clim([0., .3])
Ejemplo n.º 38
0
#!/usr/bin/env python
import os
import pyfits
from tamasis import *
import lo
from csh import *
# define data set
datadir = os.getenv('CSH_DATA')
ids = ['1342184518', '1342184519', '1342184596', '1342184597', 
       '1342184598', '1342184599']
filenames = [os.path.join(datadir, id_str + '_blue_PreparedFrames.fits')
             for id_str in ids]
pacs = PacsObservation(filename=filenames, 
                       fine_sampling_factor=1, keep_bad_detectors=False)
# get header from altieri maps
header = pyfits.fitsopen('/mnt/herschel1/mapmaking/nbarbey/Abell2218_altieri/' +
                         'a2218_red_Map.v2.2.sci.fits')[0].header
# data
tod = pacs.get_tod()
# remove bad pixels (by updating mask !)
#tod = remove_bad_pixels(tod)
# deglitching
projection = Projection(pacs, header=header, resolution=3., npixels_per_sample=6)
tod.mask = deglitch_l2mad(tod, projection)
# model
masking = Masking(tod.mask)
model = masking * projection
# remove drift
tod = filter_median(tod, length=49)
# first map
backmap = model.transpose(tod)
P = lo.aslinearoperator(model.aslinearoperator())
Ejemplo n.º 39
0
#!/usr/bin/env python
import numpy as np
import pyfits
import os
import fht
import pylab as pl
from mpl_toolkits.axes_grid import AxesGrid

# data
datadir = os.getenv('CSH_DATA')
filename = datadir + '/../lowfreq/1342182424_blue_level0Frames.fits'

data = pyfits.fitsopen(filename)[1].data[..., 50000:60000]
idx = 2000

im0 = data[..., idx].copy()
m = np.mean(data, axis=-1)
for i in xrange(data.shape[-1]):
    data[..., i] -= m

im = data[..., idx]
im_fht = fht.fht(im0)
im_fht[0, 0] = 0.

# figure
fig = pl.figure()
pl.gray()
grid = AxesGrid(
    fig,
    111,
    nrows_ncols=(3, 1),
Ejemplo n.º 40
0
#!/usr/bin/env python
import pyfits
from pylab import matplotlib
from matplotlib.pyplot import *
from numpy import *
import getopt, sys, os

fname_ext = sys.argv[1]
fname = fname_ext.split('.')[0]
out_fname = fname + '.png'
print('displaying ' + fname)
title_str = fname.split(os.sep)[-1]
t = pyfits.fitsopen(fname_ext)[0].data
h = figure()
#imshow(flipud(t.T) , interpolation="nearest")
#imshow(flipud(t.T) ** .25, interpolation="nearest")
imshow(flipud((t - t.min()).T) ** .25, interpolation="nearest")
colorbar()
title(title_str)
xlabel('Right Ascension')
ylabel('Declination')
show()
h.savefig(out_fname)
Ejemplo n.º 41
0
#labels, nlabels = ndi.measurements.label(roi)
# select biggest region
#region_size = [np.sum(labels == i) for i in xrange(1, nlabels)]
#biggest_index = np.where(region_size == np.max(region_size))[0][0] + 1
#roi = labels == biggest_index
roi = np.ones((192, 192))

# intiat list of radial profiles
phot_tables = []
pix_tables = []
p = []
datas = []
headers = []
for i, filename in enumerate(filenames):
    # read data
    p.append(pyfits.fitsopen(filename)[0])
    datas.append(np.ma.MaskedArray(p[-1].data.T, mask=(1 - roi)))
    if i == 0:
        # backprojection normalize
        datas[-1] /= 8
    headers.append(p[-1].header)
    # run radial_profile
    radii, phot_table, pix_table = radial_profile(datas[-1], headers[-1],
                                                  center, incl, pa)
    phot_tables.append(phot_table)
    pix_tables.append(pix_table)

# compute background
bkg_roi = np.zeros(datas[0].shape, dtype=np.bool8)
bkg_roi[0:40, 0:50] = 1.
bkg_roi[0:50, 150:-1] = 1.
Ejemplo n.º 42
0
path = os.path.abspath(os.path.dirname(__file__)) + '/data/madmap1/'
obs = MadMap1Observation(path + 'todSpirePsw_be',
                         path + 'invnttSpirePsw_be',
                         path + 'madmapSpirePsw.fits[coverage]',
                         'big_endian',
                         135,
                         missing_value=np.nan)
obs.instrument.name = 'SPIRE/PSW'

tod = obs.get_tod(unit='Jy/beam')
projection = Projection(obs)
packing = Unpacking(obs.info.mapmask, field=np.nan).T

map_naive = mapper_naive(tod, projection)
map_naive = mapper_naive(tod, projection * packing)
map_ref = pyfits.fitsopen(path + 'naivemapSpirePsw.fits')['image'].data
if any_neq(map_naive, map_ref): raise TestFailure('mapper_naive madcap 1')

map_naive_1d = mapper_naive(tod, projection)
map_naive_2d = packing.T(map_naive_1d)
if any_neq(map_naive_2d, map_ref): raise TestFailure('mapper_naive madcap 2')

packing = Unpacking(obs.info.mapmask).T

#M = 1 / map_naive.coverage
#M[~np.isfinite(M)] = np.max(M[np.isfinite(M)])
#map_rlsw1 = mapper_rls(tod, projection*packing, padding.T * fft.T * invNtt * fft * padding, hyper=0, tol=1.e-5, M=M, solver=cg)
#print('Elapsed time: ' + str(map_rlsw1.header['time']))

M = Diagonal(packing(1 / map_naive.coverage))
if np.any(~np.isfinite(M.data)):
Ejemplo n.º 43
0
# define data set
datadir = os.getenv('CSH_DATA')
ids = [
    '1342184518', '1342184519', '1342184596', '1342184597', '1342184598',
    '1342184599'
]
filenames = [
    os.path.join(datadir, id_str + '_blue_PreparedFrames.fits')
    for id_str in ids
]
pacs = PacsObservation(filename=filenames,
                       fine_sampling_factor=1,
                       keep_bad_detectors=False)
# get header from altieri maps
header = pyfits.fitsopen(
    '/mnt/herschel1/mapmaking/nbarbey/Abell2218_altieri/' +
    'a2218_red_Map.v2.2.sci.fits')[0].header
# data
tod = pacs.get_tod()
# remove bad pixels (by updating mask !)
#tod = remove_bad_pixels(tod)
# deglitching
projection = Projection(pacs,
                        header=header,
                        resolution=3.,
                        npixels_per_sample=6)
tod.mask = deglitch_l2mad(tod, projection)
# model
masking = Masking(tod.mask)
model = masking * projection
# remove drift
Ejemplo n.º 44
0
        shutil.rmtree(self.odir)

        return ret


if __name__ == '__main__':
    if len(sys.argv) <= 2:
        print 'Usage: %s <odir> <fits filename> <xoffs> <yoffs> <origname> <obs_id> <imgid>' % (
            sys.argv[0])
        sys.exit(1)

    a = imgAstrometryScript(sys.argv[2], sys.argv[1])

    ra = dec = None

    ff = pyfits.fitsopen(sys.argv[2], 'readonly')
    ra = ff[0].header['RA']
    dec = ff[0].header['DEC']
    object = ff[0].header['OBJECT']
    ff.close()

    xoffs = 0
    yoffs = 0

    if len(sys.argv) >= 5:
        xoffs = float(sys.argv[3])
        yoffs = float(sys.argv[4])

    num = -1
    try:
        fn = os.path.basename(sys.argv[5])