Ejemplo n.º 1
0
 def __init__(self, bbox, **kargs):
     F = simple.cuboid(*bbox)
     Actor.__init__(self,
                    F,
                    mode='wireframe',
                    lighting=False,
                    opak=True,
                    **kargs)
Ejemplo n.º 2
0
def run():

    clear()
    transparent()
    smoothwire

    nsphere = 10
    S = sphere(nsphere)

    bbs = cuboid(*S.bbox()).toMesh().scale([0.8, 0.8, 1]).rot(30, 1).rot(
        20, 0).shear(2, 1, 0.3).toSurface()

    clippedIn = vtkClip(S, implicitdata=bbs, method='surface', insideout=0)
    clippedOut = vtkClip(S, implicitdata=bbs, method='surface', insideout=1)

    draw(clippedIn, color=red, alpha=1)
    draw(clippedOut, color=blue, alpha=1)
    draw(bbs, color=yellow)
Ejemplo n.º 3
0
def run():
    clear()
    smooth()

    image = os.path.join(pf.cfg['pyformexdir'], 'data', 'butterfly.png')

    F = simple.cuboid().centered().toMesh()
    G = Formex('4:0123')
    H = G.replic2(3, 2).toMesh().setProp(arange(1, 7)).centered()
    K = G.scale(200).toMesh()
    K.attrib(color=yellow, rendertype=2, texture=image)
    draw([F, H, K], texture=image)
    drawText(image, (200, 20), size=20)

    view('iso')
    zoomAll()
    zoom(0.5)

    bgcolor(color=[white, yellow, yellow, white], image=image)
Ejemplo n.º 4
0
def run():
    smoothwire()

    print("======================")
    print("A cube with side = 1.0")
    F = cuboid().toMesh().convert('tet4').toFormex()
    clear()
    draw(F.toMesh().getBorderMesh())
    print("Number of tetrahedrons: %s" % F.shape[0])
    print("Bounding box: %s" % F.bbox())
    V, M, C, I = inertia.tetrahedral_inertia(F.coords)
    # Analytical
    Va = 1.
    Ma = Va
    Ca = [0.5, 0.5, 0.5]
    Ia = [1. / 6, 1. / 6, 1. / 6, 0., 0., 0.]
    print("Volume = %s (corr. %s)" % (V, Va))
    print("Mass = %s (corr. %s)" % (M, Ma))
    print("Center of mass = %s (corr. %s)" % (C, Ca))
    print("Inertia tensor = %s (corr. %s)" % (I, Ia))

    pause()
    print("======================")
    print("A sphere with radius = 1.0")
    # Increase the quality to better approximate the sphere
    quality = 4
    F = sphere(quality).tetgen().toFormex()
    clear()
    draw(F.toMesh().getBorderMesh())
    print("Number of tetrahedrons: %s" % F.shape[0])
    print("Bounding box: %s" % F.bbox())
    V, M, C, I = inertia.tetrahedral_inertia(F.coords)
    # Analytical
    Va = 4 * pi / 3
    Ma = Va
    Ca = [0., 0., 0.]
    ia = 8 * pi / 15
    Ia = [ia, ia, ia, 0., 0., 0.]
    print("Volume = %s (corr. %s)" % (V, Va))
    print("Mass = %s (corr. %s)" % (M, Ma))
    print("Center of mass = %s (corr. %s)" % (C, Ca))
    print("Inertia tensor = %s (corr. %s)" % (I, Ia))
Ejemplo n.º 5
0
def testConverts():
    """_This debug function generates a .neu file for each element type"""

    chdir('~')
    testdir = 'f2fluTests'
    if not os.path.exists(testdir):
        os.makedirs(testdir)
    chdir(testdir)

    from pyformex.simple import cuboid
    mesh = Formex([0., 0., 0.]).extrude(3, dir=0).toMesh().extrude(3, dir=1)
    write_neu('test-quad4.neu', mesh)
    write_neu('test-tri3.neu', mesh.convert('tri3'))
    mesh = cuboid().toMesh().convert('hex8-8')
    write_neu('test-hex8.neu', mesh)
    mesh = Mesh([[0., 0., 0.], [1., 0., 0.], [0., 1., 0.], [0., 0., 1.],
                 [1., 0., 1.], [0., 1., 1.]], [[0, 1, 2, 3, 4, 5]])
    write_neu('test-wed6.neu', mesh)
    mesh = Mesh([[0., 0., 0.], [1., 0., 0.], [0., 1., 0.], [0., 0., 1.]],
                [[0, 1, 2, 3]],
                eltype='tet4')
    write_neu('test-tet4.neu', mesh)
Ejemplo n.º 6
0
def run():
    global line, H, C, CS, savewait
    savewait = delay(0.5)
    clear()
    lights(True)
    view('iso')
    smooth()
    transparent(state=False)
    linewidth(2)
    setDrawOptions({'bbox':None})

    # read the model of the horse
    F = Formex.read(getcfg('datadir')+'/horse.pgf')
    # make sure it is centered
    F = F.centered()
    # scale it to unity size and head it in the x-direction
    xmin, xmax = F.bbox()
    H = F.scale(1./(xmax[0]-xmin[0])).rotate(180, 1)
    # create the global coordinate system
    CS0 = CS = CoordSys()
    # some text

    # A storage for the scenes
    script = []

    # Scene 0: The story starts idyllic
    T = 'There once was a white horse running free in the forest.'
    script += [ createScene(text=T, caged=False, color=7) ]
    sleep(3)

    # Scene 1: Things turn out badly
    T = 'Some wicked pyFormex user caged the horse and transported it around.'
    # apply same transformations on model and coordinate system
    H, CS = [ i.translate([0., 3., 6.]) for i in [H, CS] ]
    C = simple.cuboid(*H.bbox())
    script += [ createScene(text=T) ]
    sleep(2)

    # Scene 2..n: caged movements
    T = 'The angry horse randomly changed colour at each step.'
    script += [ createScene(text=T, move=1) ]
    m = len(script)
    n = 16
    script += [ createScene(move=i) for i in range(m, n, 1) ]
    sleep(2)

    # Scene n+1: the escape
    T = 'Finally the horse managed to escape from the cage.\nIt wanted to go back home and turned black,\nso it would not be seen in the night.'
    escape = script[-1]
    script += [ createScene(text=T, color=0, caged=False) ]
    undraw(escape)
    sleep(3)

    # The problem
    T = "But alas, it couldn't remember how it got there!!!"
    drawText(T, (20, line), size=20)
    line += line_inc
    for s in script[:-2]:
        sleep(0.1)
        undraw(s)
    sleep(3)

    # The solution
    T = "But thanks to pyFormex's orientation,\nit could go back in a single step,\nstraight through the bushes."
    drawText(T, (20, line), size=20)
    line += 3*line_inc
    H = H.transformCS(CS0, CS)
    draw(Formex([[CS.points()[3], CS0.points()[3]]]))
    sleep(3)

    T = "And the horse lived happily ever after."
    script += [ createScene(text=T, color=7, caged=False) ]
    undraw(script[-2])
Ejemplo n.º 7
0
def hex_mesh_huge():
    nx, ny, nz = 20, 20, 8
    F = simple.cuboid().replic2(nx, ny).replic(nz, 1., 2)
    F += F.trl([nx, ny, nz])
    return F.toMesh()
Ejemplo n.º 8
0
def hex_mesh_orig():
    x, y, z = 10, 10, 8
    F = simple.cuboid().replic2(x, x).replic(z, 1., 2)
    F += F.trl([x, y, z])
    return F.toMesh()
Ejemplo n.º 9
0
def hex_mesh():
    nx, ny, nz = 3, 2, 2
    F = simple.cuboid().replic2(nx, ny).replic(nz, 1., 2)
    F += F.trl([nx, ny, 0])
    F += F.trl([2*nx, 2*ny, nz])
    return F.toMesh()