Ejemplo n.º 1
0
    def testBenchmarkMinimizeErrorPlot(self):
        fileprint = False

        sigma_R = 0.005
        sigma_T = 0.007
        N_training = 30
        N_plot = 4

        line1, line2 = createRandomLines(2)
        R_real = RotorLine2Line(line1, line2)

        traininglinesets = createNoisyLineSet(R_real, sigma_R, sigma_T,
                                              N_training)
        R_min, nit = minimizeError(traininglinesets, RotorLineMapping)

        validationlines = createRandomLines(N_plot)
        plot = Plot3D()

        for line in validationlines:
            line_real = R_real * line * ~R_real
            line_est = R_min * line * ~R_min

            plot.addLine(line_real)
            plot.addLine(line_est)

        if fileprint:
            timestring = time.strftime("%Y%m%d-%H%M%S")
            figname = "../benchmarkreports/plot_%s.png" % timestring
            plot.save(figname)
Ejemplo n.º 2
0
    def testBenchmarkLinesMinimizeError(self):
        seed = 21
        sigma_T = 0.005
        sigma_R = 0.002
        N = 10

        line1, line2 = createRandomLines(2)
        R_real = RotorLine2Line(line1, line2)

        traininglinesets = createNoisyLineSet(R_real, sigma_R, sigma_T, N)
        validationlinesets = createNoisyLineSet(R_real, sigma_R, sigma_T, N)
        print(
            "Training and validation sets created with sig_r = %f and sig_t = %f, N = %d"
            % (sigma_R, sigma_T, N))

        map_list = [BivectorLineMapping]

        for map_obj in map_list:
            np.random.seed(seed)
            print(map_obj.name)
            benchmarkMinimizeError(R_real,
                                   traininglinesets,
                                   validationlinesets,
                                   fileout=None,
                                   mapping=map_obj)
Ejemplo n.º 3
0
    def setUpMultiView(self, N_lines, K_imgs, sigma_R_image = 0.001, sigma_T_image = 0.001):
        
        #Define random rotations for our cameras
        R_list = [ga_exp(createRandomBivector()) for _ in range(K_imgs)]            

        #Create N lines
        lines = createRandomLines(N_lines, scale = 2)
        for i in range(len(lines)):
            lines[i] = Sandwich(lines[i], Translator(e3*4))

        
        #Create our noise free images for comparison
        lines_img_base_d_real   =  [projectLineToPlane(line, one) for line in lines]        #Real base lines
        lines_imgs_d_real       = [[projectLineToPlane(line, R_list[i]) for line in lines] for i in range(K_imgs)]
  


        #Create noisy images
        lines_img_base_d     =  [perturbeObjectInplane(projectLineToPlane(line, one)      , sigma_R_image, sigma_T_image) for line in lines]    
        lines_imgs_d         = [[perturbeObjectInplane(projectLineToPlane(line, R_list[i]), sigma_R_image, sigma_T_image) for line in lines] for i in range(K_imgs)]  

        i = 0
        #for j in range(len(lines_imgs_d[i])):
        #    print((R_list[i]*(-no ^ lines_imgs_d_real[i][j])* ~R_list[i]).normal())
        #    print(((R_list[i]*(-no)* ~R_list[i])^lines[j]).normal())
        #    print("")


        return R_list, lines, lines_img_base_d, lines_img_base_d_real , lines_imgs_d, lines_imgs_d_real
Ejemplo n.º 4
0
    def testNoisyRotationExtendedExtraction(self):
        verbose = True

        np.random.seed(2)
        O1 = up(0)
        B = 0.1 * e12 + 0.2*e13 + 0.1 *e23 + 1*(3*e1 -1*e2 + 2*e3)*ninf + 0.1 * E0
        R = np.exp(B)
        N = 100

        lines = createRandomLines(N, scale = 2)
        for i in range(len(lines)):
            lines[i] = Sandwich(lines[i], Translator(e3*3))

        sigma_R_model = 0.001
        sigma_T_model = 0.001
        lines_perturbed = [perturbeObject(line, sigma_T_model, sigma_R_model) for line in lines] #Model noise

        lines_img_d_real   = [projectLineToPlane(line, R) for line in lines]                     #Real lines

        sigma_R_image = 0.001
        sigma_T_image = 0.001        
        lines_img_d        = [perturbeObjectInplane(projectLineToPlane(line, R), sigma_R_image, sigma_T_image) for line in lines]

        #using our noisy model and the noisy image of them to estimate R
        R_min, Nint = minimizeError((lines_perturbed, lines_img_d), ExtendedBivectorLineImageMapping , x0 = None) 

        if verbose:
            print("R:   ", R)
            print("R_min", R_min)

        assert(MVEqual(R_min, R, rtol = 1e-2, atol = 1e-2,  verbose = False))    #Hard coded values. 
        #Weird condition. But we hope to find a "better" solution than the true one for the data we see, but worse than the true projection
        assert(sumImageFunction(R, lines, lines_img_d) > sumImageFunction(R_min, lines, lines_img_d) > sumImageFunction(R, lines, lines_img_d_real)) 
Ejemplo n.º 5
0
    def testThreeViewAllPairsEstimation(self):
        np.random.seed(3)
        N = 5
        #Defining the external parameters
        B_A = (0.1 * e12 + 0.2*e13 + 0.1 *e23 + (3*e1 -1*e2 + 2*e3)*ninf)
        R_A = ga_exp(B_A)

        B_B = (-0.2 * e12 + -0.1*e13- 0.05 *e23 + (1*e1 +2*e2 - 3*e3)*ninf)
        R_B = ga_exp(B_B)

        dx = np.random.normal(size=12, scale=0.01)                    #Starting estimate is slightly off            
        x0 = MultiViewLineImageMapping.inverserotorconversion([R_A, R_B]) + dx
        R_A_start, R_B_start = MultiViewLineImageMapping.rotorconversion(x0)


        lines = createRandomLines(N, scale = 2)
        for i in range(len(lines)):
            lines[i] = Sandwich(lines[i], Translator(e3*10))

        lines_img_d_base_real   = [projectLineToPlane(line, one) for line in lines]        #Real lines A
        lines_img_d_A_real      = [projectLineToPlane(line, R_A) for line in lines]        #Real lines A
        lines_img_d_B_real      = [projectLineToPlane(line, R_B) for line in lines]        #Real lines A

        sigma_R_image = 0.00001
        sigma_T_image = 0.00001

        lines_img_base_d     = [perturbeObjectInplane(projectLineToPlane(line, one), sigma_R_image, sigma_T_image) for line in lines]      
        lines_img_A_d        = [perturbeObjectInplane(projectLineToPlane(line, R_A), sigma_R_image, sigma_T_image) for line in lines]
        lines_img_B_d        = [perturbeObjectInplane(projectLineToPlane(line, R_B), sigma_R_image, sigma_T_image) for line in lines]


        #print("No noise cost =", MultiViewLineImageMapping.costfunction(R_A,       R_B,        lines_img_d_base_real, lines_img_d_A_real, lines_img_d_B_real))


        #Computation
        lines_imgs_d = [lines_img_A_d, lines_img_B_d]
        args = (lines_img_base_d, )
        R_list, Nint = minimizeError(args ,MultiViewLineImageMapping, x0 = x0)

        R_A_min, R_B_min = R_list

        #Output
        print("Nint = ", Nint)

        print("")
        print("R_A_real : ", R_A)
        print("R_A_min  : ", R_A_min)
        print("R_A_start: ", R_A_start)

        print("")
        print("R_B_real:  ", R_B)
        print("R_B_min :  ", R_B_min)
        print("R_B_start: ", R_B_start)

        print("")
        print("Start cost    =", MultiViewLineImageMapping.costfunction(R_A_start, R_B_start,  lines_img_base_d,      lines_img_A_d, lines_img_B_d))        
        print("Final cost    =", MultiViewLineImageMapping.costfunction(R_A_min,   R_B_min,    lines_img_base_d,      lines_img_A_d, lines_img_B_d))        
        print("Target cost   =", MultiViewLineImageMapping.costfunction(R_A,       R_B,        lines_img_base_d,      lines_img_A_d, lines_img_B_d))        
        print("No noise cost =", MultiViewLineImageMapping.costfunction(R_A,       R_B,        lines_img_d_base_real, lines_img_d_A_real, lines_img_d_B_real))
Ejemplo n.º 6
0
    def testImageCostFunction(self):
        O1 = up(0)
        B = 0.1 * e12 + 0.2*e13 + 0.1 *e23 + (3*e1 -1*e2 + 2*e3)*ninf
        R = ga_exp(B)
        N = 10

        lines = createRandomLines(N, scale = 30)
        cPlane1 = (ninf + e3)*I5   #Camera plane 1
        cPlane2 = R * cPlane1 * ~R

        lines_img_d   = [projectLineToPlane(line, R) for line in lines]

        assert(sumImageFunction(R, lines, lines_img_d) < 1e-20) #Very small 
        R_wrong = ga_exp(B * 0.5)
        assert(sumImageFunction(R_wrong, lines, lines_img_d) > 1e-5) #not very small
Ejemplo n.º 7
0
    def testLineAveraging(self):
        seed = 1
        sigma_T = 0.005
        sigma_R = 0.002
        N = 100

        mapping = BivectorLineMapping

        line_start, line_target = createRandomLines(2)
        R_real_min, N_int = minimizeError([(line_start, line_target)],
                                          mapping=BivectorLineMapping)
        R_real = RotorLine2Line(line_start, line_target)

        print("R_real    ", R_real)
        print("R_real_min", R_real_min)
        print("B_real_min", ga_log(R_real_min))
        print("B_real    ", ga_log(R_real))

        print("L_real_min", R_real_min * line_start * ~R_real_min)

        traingingdata = [
            line_start,
            [perturbeObject(line_target, sigma_R, sigma_T) for _ in range(N)]
        ]
        validationdata = [
            line_start,
            [perturbeObject(line_target, sigma_R, sigma_T) for _ in range(N)]
        ]

        print(
            "Training and validation sets created with sig_r = %f and sig_t = %f, N = %d"
            % (sigma_R, sigma_T, N))

        map_list = [BivectorLineEstimationMapping]

        for map_obj in map_list:
            np.random.seed(seed)
            print(map_obj.name)
            realtrainingcost, minimumvalidationcost, R_min = benchmarkMinimizeError(
                R_real,
                traingingdata,
                validationdata,
                N=N,
                fileout=None,
                mapping=map_obj)
            print("L_real   = ", line_target)
            print("L_min    = ", R_min * line_start * ~R_min)
            print("L_example= ", validationdata[0])
Ejemplo n.º 8
0
    def testRotationExtraction(self):
        np.random.seed(2)
        O1 = up(0)
        B = 0.1 * e12 + 0.2*e13 + 0.1 *e23 + (3*e1 -1*e2 + 2*e3)*ninf
        R = ga_exp(B)
        N = 10

        lines = createRandomLines(N, scale = 30)
        cPlane1 = (ninf + e3)*I5   #Camera plane 1
        cPlane2 = R * cPlane1 * ~R

        lines_img_d   = [projectLineToPlane(line, R) for line in lines]
        R_min, Nint = minimizeError((lines, lines_img_d), BivectorLineImageMapping, x0 = None)

        assert(MVEqual(R_min, R, rtol = 1e-2, atol = 1e-2,  verbose = False))    #Hard coded values. 
        assert(sumImageFunction(R, lines, lines_img_d) < sumImageFunction(R_min, lines, lines_img_d))
Ejemplo n.º 9
0
    def testExtremeRotationExtraction(self):
        verbose = True

        np.random.seed(2)
        O1 = up(0)

        rot_scale       = 10
        tran_scale      = 10
        spread_scale    = 10

        B = 0.1 * e12 + 0.2*e13 + 0.1 *e23 + rot_scale*(3*e1 -1*e2 + 2*e3)*ninf
        R = ga_exp(B)
        N = 10

        lines = createRandomLines(N, scale = spread_scale)
        for i in range(len(lines)):
            lines[i] = Sandwich(lines[i], Translator(e3*tran_scale))

        sigma_R_model = 0.001
        sigma_T_model = 0.001
        lines_perturbed = [perturbeObject(line, sigma_T_model, sigma_R_model) for line in lines] #Model noise

        lines_img_d_real   = [projectLineToPlane(line, R) for line in lines]                     #Real lines

        sigma_R_image = 0.001
        sigma_T_image = 0.001      
        lines_img_d        = [perturbeObjectInplane(projectLineToPlane(line, R), sigma_R_image, sigma_T_image) for line in lines]

        mapping = BivectorLineImageMapping

        x0      = mapping.inverserotorconversion(R)
        x0[:3] += np.array([0.1, 0.9, -0.17]) 
        R_start = mapping.rotorconversion(x0)

        #using our noisy model and the noisy image of them to estimate R
        R_min, Nint = minimizeError((lines_perturbed, lines_img_d), mapping, x0 = x0) 

        if verbose:
            print("R:     ", R)
            print("R_min  ", R_min/np.sign(R_min[0]))
            print("R_start", R_start/np.sign(R_start[0]))

            print("")

            print("B:          ", B)
            print("B_min   - B ", ga_log(R_min/np.sign(R_min[0])) - B)
            print("B_start - B ", ga_log(R_start/np.sign(R_start[0])) - B)
Ejemplo n.º 10
0
    def testLinePointError(self):
        print("\nWARNING: SLOW")
        #Testing how using the distance from certain points on a line as a good external metric of how well we are performing.

        np.random.seed(10)

        sigma_R = 0.05
        sigma_T = 0.07
        N = 20

        line1, line2 = createRandomLines(2)
        R_real = RotorLine2Line(line1, line2)

        traininglinesets = createNoisyLineSet(R_real, sigma_R, sigma_T, N)

        #Test various minimazation algorithms
        R_rotor, nit = minimizeError(traininglinesets, RotorLineMapping)
        R_bivector, nit = minimizeError(traininglinesets, BivectorLineMapping)
        R_lineproduct, nit = minimizeError(traininglinesets,
                                           LinePropertyBivectorMapping)
        R_dummy = RotorLine2Line(
            traininglinesets[0][0], traininglinesets[0]
            [1])  #comparing it to just taking the first one we find

        R_list = [R_rotor, R_bivector, R_lineproduct, R_dummy]

        costs = []

        N_val = 10
        N_points = 4

        for R in R_list:
            costs.append(linePointCostMetric(R, R_real, N_val=N_val))

        print("rotor_pointcost          ", costs[0])
        print("bivector_pointcost       ", costs[1])
        print("lineproduct_pointcost    ", costs[2])
        print("dummy_pointcost          ", costs[3])
Ejemplo n.º 11
0
def benchmarkImageCostFunction():
    np.random.seed(123)
    B = createRandomBivector()
    R_real = ga_exp(B)
    N = 10

    lines = createRandomLines(N, scale = 2)
    for i in range(len(lines)):
        lines[i] = Sandwich(lines[i], Translator(e3*3))

    sigma_R_model = 0.01
    sigma_T_model = 0.01
    lines_perturbed = [perturbeObject(line, sigma_T_model, sigma_R_model) for line in lines] #Model noise

    lines_img_d_real   = [projectLineToPlane(line, R_real) for line in lines]                     #Real lines

    sigma_R_image = 0.01
    sigma_T_image = 0.01        
    lines_img_d        = [perturbeObjectInplane(projectLineToPlane(line, R_real), sigma_R_image, sigma_T_image) for line in lines]

    traininglinesets = (lines_perturbed, lines_img_d)

    benchmarkMinimizeError(R_real, traininglinesets, traininglinesets, fileout = None, mapping = BivectorLineImageMapping)
Ejemplo n.º 12
0
def plotCostFunctionEffect():
    print("\nRunning plotCostFunctionEffect")
    print("")
    np.random.seed(1)

    N_train = 20

    line_scale = 10
    translation_scale = 10

    #Test extreme values
    sigma_R = 0.01
    sigma_T = 1

    line1, line2 = createRandomLines(2)
    a = createRandomVector(scale=translation_scale)
    print("Translated lineA by ", a)

    b = createRandomVector(scale=translation_scale)
    print("Translated lineB by ", b)

    T_a = Translator(a)
    T_b = Translator(b)

    #Move them far away from the origin
    lineA = T_a * line1 * ~T_a
    lineB = T_b * line2 * ~T_b

    R_real = RotorLine2Line(lineA, lineB)

    linesets = createNoisyLineSet(R_real,
                                  sigma_R,
                                  sigma_T,
                                  N_train,
                                  scale=line_scale)

    mapping = BivectorWeightedLineMapping
    mapping.costfunction = sumWeightedLineSquaredErrorCost(1. /
                                                           translation_scale)

    x0 = mapping.inverserotorconversion(R_real)
    x_test = x0[0]
    y_test = x0[3]

    N_rot = 50
    N_tran = 50
    rot_range = 0.4
    translation_range = 10

    rotation = np.linspace(-rot_range, rot_range, N_rot)
    translation = np.linspace(-translation_range, translation_range, N_tran)

    ans = np.zeros((N_rot, N_tran))

    for i, rot in enumerate(rotation):
        for j, tran in enumerate(translation):
            x0[0] = x_test + tran
            x0[3] = y_test + rot
            ans[i, j] = np.log(
                mapping.costfunction(mapping.rotorconversion(x0), linesets))

    xv, yv = np.meshgrid(translation, rotation)

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    ax.set_xlabel("Translation error")
    ax.set_ylabel("Rotation error")
    ax.set_zlabel("log(objective function)")

    ax.plot_wireframe(xv, yv, ans)
    plt.show()
Ejemplo n.º 13
0
    def testWeigthingFunction(self):
        print("\nRunning testWeigthingFunction")
        print("")
        #np.random.seed(5)
        #Test on some extreme values
        sigma_R = 0.01
        sigma_T = 0.1
        N_train = 100
        N_val = 20
        line_scale = 10
        translation_scale = 100

        line1, line2 = createRandomLines(2)
        a = createRandomVector(scale=translation_scale)
        print("Translated lineA by ", a)

        b = createRandomVector(scale=translation_scale)
        print("Translated lineB by ", b)

        T_a = Translator(a)
        T_b = Translator(b)

        #Move them far away from the origin
        lineA = T_a * line1 * ~T_a
        lineB = T_b * line2 * ~T_b

        R_real = RotorLine2Line(lineA, lineB)

        #x0 = BivectorWeightedLineMapping.inverserotorconversion(R_real)

        #x0 += np.array([15, 21, -11, 0.1, -0.1, 0.21])
        #R_start = BivectorWeightedLineMapping.
        #R_start = BivectorWeightedLineMapping.rotorconversion(x0)

        traininglinesets = createNoisyLineSet(R_real,
                                              sigma_R,
                                              sigma_T,
                                              N_train,
                                              scale=line_scale)
        validationlinesets = createNoisyLineSet(R_real,
                                                sigma_R,
                                                sigma_T,
                                                N_val,
                                                scale=line_scale)

        mapping = BivectorWeightedLineMapping

        weightList = [1e-4, 1e-2, 1, 1e2, 1e4]
        #mappingList = [BivectorLineMapping, LinePropertyBivectorMapping, BivectorLogCostLineMapping]

        plot = Plot3D()

        testline = validationlinesets[0][0]
        plot.addLine(R_real * testline * ~R_real, color='r')

        for weight in weightList:

            t0 = time.time()
            print("Running %s" % mapping.name)
            print("Weight = %e" % weight)

            #Test various minimazation algorithms
            mapping = BivectorWeightedLineMapping
            mapping.costfunction = sumWeightedLineSquaredErrorCost(weight)

            R_min, nit = minimizeError(traininglinesets, mapping, x0=None)

            #mapping.costfunction = logSumWeightedLineSquaredErrorCost(weight)

            #Finding the cost if we used the actual rotor used to generate the matrix
            realtrainingcost = mapping.costfunction(R_real, traininglinesets)
            print("Real training cost is %s" % str(realtrainingcost))

            realvalidationcost = mapping.costfunction(R_real,
                                                      validationlinesets)
            print("Real validation cost is %s" % str(realvalidationcost))

            minimumtrainingcost = mapping.costfunction(R_min, traininglinesets)
            print("minimized training cost %f" % minimumtrainingcost)

            minimumvalidationcost = mapping.costfunction(
                R_min, validationlinesets)
            print("minimized validation cost = %f" % minimumvalidationcost)

            realpointcost = linePointCostMetric(R_real, R_min, 10)
            print(
                "Averaged cost for points a: %f, a + m: %f, a + 10m: %f, a + 100m: %f, a + 1000m: %f"
                % tuple(realpointcost))

            print("")
            print("R_real= %s" % str(R_real / np.sign(float(R_real(0)))))
            print("R_min = %s" % str(R_min / np.sign(float(R_min(0)))))
            #print("R_start = %s" % str(R_start/np.sign(float(R_start(0)))))

            B_real = ga_log(R_real / np.sign(float(R_real(0))))
            B_min = ga_log(R_min / np.sign(float(R_min(0))))
            #B_start = ga_log(R_start/np.sign(float(R_start(0))))

            print("")
            print("B_real= %s" % str(B_real))
            print("B_min = %s" % str(B_min))
            #print("B_start = %s"    % str(B_start))

            print("")
            print("C(R(B_real - B_min)) = %f" %
                  rotorAbsCostFunction(ga_exp(B_min - B_real)))

            plot.addLine(R_min * testline * ~R_min, color=mapping.color)

            t_end = time.time()

            print("")
            print(
                "Running time for extracting best rotor for %d line pairs is %f s"
                % (N_train, t_end - t0))
            print("\n\n")

        plot.show(False)
Ejemplo n.º 14
0
    def testExtremeLineRotation(self):
        print("\nRunning testExtremeLineRotation")
        print("")
        np.random.seed(1)
        #Test extreme values
        sigma_R = 0.1
        sigma_T = 1
        N_train = 100
        N_val = 20
        line_scale = 1000
        translation_scale = 1000

        line1, line2 = createRandomLines(2)
        a = createRandomVector(scale=translation_scale)
        print("Translated lineA by ", a)

        b = createRandomVector(scale=translation_scale)
        print("Translated lineB by ", b)

        T_a = Translator(a)
        T_b = Translator(b)

        #Move them far away from the origin
        lineA = T_a * line1 * ~T_a
        lineB = T_b * line2 * ~T_b

        R_real = RotorLine2Line(lineA, lineB)

        traininglinesets = createNoisyLineSet(R_real,
                                              sigma_R,
                                              sigma_T,
                                              N_train,
                                              scale=line_scale)
        validationlinesets = createNoisyLineSet(R_real,
                                                sigma_R,
                                                sigma_T,
                                                N_val,
                                                scale=line_scale)

        mappingList = [BivectorLineMapping]

        x0 = BivectorLineMapping.inverserotorconversion(R_real)
        x0 += np.array([0.1, 0.2, -0.1, 1, -0.1, 0.21])

        plot = Plot3D()

        testline = validationlinesets[0][0]
        plot.addLine(R_real * testline * ~R_real, color='r')

        for mapping in mappingList:

            t0 = time.time()
            print("Running %s" % mapping.name)

            #Test various minimazation algorithms
            R_min, nit = minimizeError(traininglinesets, mapping, x0=x0)

            costfunction = mapping.costfunction

            #Finding the cost if we used the actual rotor used to generate the matrix
            realtrainingcost = costfunction(R_real, traininglinesets)
            print("Real training cost is %s" % str(realtrainingcost))

            realvalidationcost = costfunction(R_real, validationlinesets)
            print("Real validation cost is %s" % str(realvalidationcost))

            minimumtrainingcost = costfunction(R_min, traininglinesets)
            print("minimized training cost %f" % minimumtrainingcost)

            minimumvalidationcost = costfunction(R_min, validationlinesets)
            print("minimized validation cost = %f" % minimumvalidationcost)

            realpointcost = linePointCostMetric(R_real, R_min, 10)
            print(
                "Averaged cost for points a: %f, a + m: %f, a + 10m: %f, a + 100m: %f, a + 1000m: %f"
                % tuple(realpointcost))

            print("")
            print("R_real= %s" % str(R_real / np.sign(float(R_real(0)))))
            print("R_min = %s" % str(R_min / np.sign(float(R_min(0)))))

            B_real = ga_log(R_real / np.sign(float(R_real(0))))
            B_min = ga_log(R_min / np.sign(float(R_min(0))))

            print("B_real= %s" % str(B_real))
            print("B_min = %s" % str(B_min))

            print("")
            print("C(R(B_real - B_min)) = %f" %
                  rotorAbsCostFunction(ga_exp(B_min - B_real)))

            plot.addLine(R_min * testline * ~R_min, color=mapping.color)

            t_end = time.time()

            print("")
            print(
                "Running time for extracting best rotor for %d line pairs is %f s"
                % (N_train, t_end - t0))
            print("\n\n")
        plot.show(False)
Ejemplo n.º 15
0
def plotCostFunctionEffect():
    print("\nRunning plotCostFunctionEffect")
    print("")
    np.random.seed(1)
    #Test extreme values

    np.random.seed(2)
    O1 = up(0)

    rot_scale       = 1
    tran_scale      = 10
    spread_scale    = 10

    B = 0.1 * e12 + 0.2*e13 - 0.1 *e23 + rot_scale*(3*e1 -1*e2 + 2*e3)*ninf
    R = ga_exp(B)
    N = 10

    lines = createRandomLines(N, scale = spread_scale)
    for i in range(len(lines)):
        lines[i] = Sandwich(lines[i], Translator(e3*tran_scale))

    sigma_R_model = 0.01
    sigma_T_model = 0.1
    lines_perturbed    = [perturbeObject(line, sigma_T_model, sigma_R_model) for line in lines] #Model noise

    lines_img_d_real   = [projectLineToPlane(line, R) for line in lines]                     #Real lines

    sigma_R_image = 0.002
    sigma_T_image = 0.01      
    lines_img_d        = [perturbeObjectInplane(projectLineToPlane(line, R), sigma_R_image, sigma_T_image) for line in lines]

    mapping = BivectorLineImageMapping

    x0       = mapping.inverserotorconversion(R) 
    x_test   = x0[0]
    y_test   = x0[3]


    N_rot               = 50
    N_tran              = 50
    rot_range           = 0.4
    translation_range   = 10

    rotation    = np.linspace(-rot_range,         rot_range,         N_rot)
    translation = np.linspace(-translation_range, translation_range, N_tran)

    ans = np.zeros((N_rot, N_tran))

    for i, rot in enumerate(rotation):
        for j, tran in enumerate(translation):
            x0[0]       = x_test + tran
            x0[3]       = y_test + rot
            ans[i, j]   = np.log(mapping.costfunction(mapping.rotorconversion(x0), lines_perturbed, lines_img_d, O1))

    xv, yv = np.meshgrid(translation, rotation)

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')


    ax.set_xlabel("Translation error")
    ax.set_ylabel("Rotation error")
    ax.set_zlabel("log(objective function)")

    ax.plot_wireframe(xv, yv, ans)
    plt.show()        
Ejemplo n.º 16
0
    def testPlotProjections(self):
        np.random.seed(2)
        #A, B = createRandomPoints(2, 100) #Real points
        #L = createLine(A, B)              #Real line

        O1 = up(0)
        F1 = up(e3)             #Image origin   
        Q1 = up(e3 + e2)        #Defines image rotation  

        #O1 = up(3*e1 + 4*e2)
        #cPlane1 = createRandomPlane(2)

        B = 0.1 * e12 + 0.2*e13 + 0.1 *e23 + 1*(3*e1 -1*e2 + 2*e3)*ninf
        #x0 = np.array([0.54, 0.85, 0.29, 1*3.1, -1.4 * 1, 1*1.89]) #Close to the real answer
        N  = 10

        R = ga_exp(B)

        O2 = R * O1 * ~R   #O2
        F2 = R * F1 * ~R
        Q2 = R * Q1 * ~R

        cPlane1 = (ninf + e3)*I5   #Camera plane 1
        cPlane2 = R * cPlane1 * ~R


        lines = createRandomLines(N, scale = 2)
        for i in range(len(lines)):
            lines[i] = Sandwich(lines[i], Translator(e3*3))

        sigma_R_model = 0.01
        sigma_T_model = 0.05
        lines_perturbed = [perturbeObject(line, sigma_T_model, sigma_R_model) for line in lines] #Model noise

        lines_img_d_real   = [projectLineToPlane(line, R) for line in lines]        #Real lines

        sigma_R_image = 0.0001
        sigma_T_image = 0.0001        
        lines_img_d        = [perturbeObjectInplane(projectLineToPlane(line, R), sigma_R_image, sigma_T_image) for line in lines]

        print("")
        print("Inital cost", sumImageFunction(R, lines_perturbed, lines_img_d))
        print("R_real: ", R)
        R_min, Nint = minimizeError((lines_perturbed, lines_img_d), BivectorLineImageMapping, x0 = None)
        print("R_min:  ", R_min)
        print("Nint = ", Nint)
        print("Final cost= ", sumImageFunction(R_min, lines, lines_img_d))

        lines_img_d_min   = [projectLineToPlane(line, R_min) for line in lines]
        lines_img_d_model = [projectLineToPlane(line, R_min) for line in lines_perturbed]


        #Printing
        color_print = ['m', 'y', 'k']
        N_print = len(color_print)


        plot_img = Plot2D()

        for i in range(N_print):
            Limg = lines_img_d[i]
            Limg_min = lines_img_d_min[i]
            Limg_real = lines_img_d_real[i]
            Limg_model = lines_img_d_model[i]
            plot_img.plotLine2D(Limg_min, color = 'g')              #Green: estimate of the real line  (hidden)
            plot_img.plotLine2D(Limg_model, color = 'c')            #Cyan:  estimate of model line
            plot_img.plotLine2D(Limg, color = 'b')                  #Blue:  image (with image noise)
            plot_img.plotLine2D(Limg_real, color = color_print[i])  #Other: real line                      (hidden)



        plot = Plot3D()

        plot.configure(5)
        plot.addPoint(O1, color='r')
        plot.addPoint(O2, color='b')

        #plot.addPoint(F1, color='r')
        plot.addPoint(F2, color='b')

        #plot.addPoint(Q1, color='r')
        plot.addPoint(Q2, color='b')


        for i in range(N_print):
            L = lines[i]
            L_img = R*lines_img_d_real[i]*~R
            L_perturbed = lines_perturbed[i]

            plot.addLine(L_perturbed, color = 'c')
            plot.addLine(L_img, color = color_print[i])
            plot.addLine(L, color = color_print[i])

        #plot.addPlane(cPlane1, center = F1, color='r')
        plot.addPlane(cPlane2, center = F2, color='b')
        
        plot_img.show(block = False)
        plot.show(block = False)