Ejemplo n.º 1
0
def plotBrightLimitInV(gBright, pdf=False, png=False):
    """
  Plot the bright limit of Gaia in V as a function of (V-I).

  Parameters
  ----------

  gBright - The bright limit of Gaia in G
  """
    vmini = np.linspace(0.0, 6.0, 1001)
    gminv = gminvFromVmini(vmini)
    vBright = gBright - gminv

    fig = plt.figure(figsize=(10, 6.5))
    plt.plot(vmini, vBright, 'b-')
    plt.xlabel('$(V-I)$')
    plt.ylabel('Bright limit of Gaia in $V$')
    plt.xlim(0, 6)
    plt.ylim(5, 11)
    plt.grid(which='both')
    plt.title("Bright limit in $G$: {0}".format(gBright))

    if (pdf):
        plt.savefig('VBandBrightLimit.pdf')
    elif (png):
        plt.savefig('VBandBrightLimit.png')
    else:
        plt.show()
Ejemplo n.º 2
0
def plotBrightLimitInV(gBright, pdf=False, png=False):
  """
  Plot the bright limit of Gaia in V as a function of (V-I).

  Parameters
  ----------

  gBright - The bright limit of Gaia in G
  """
  vmini=np.linspace(0.0,6.0,1001)
  gminv=gminvFromVmini(vmini)
  vBright=gBright-gminv

  fig=plt.figure(figsize=(10,6.5))
  plt.plot(vmini,vBright,'b-')
  plt.xlabel('$(V-I)$')
  plt.ylabel('Bright limit of Gaia in $V$')
  plt.xlim(0,6)
  plt.ylim(5,11)
  plt.grid(which='both')
  plt.title("Bright limit in $G$: {0}".format(gBright))

  if (pdf):
    plt.savefig('VBandBrightLimit.pdf')
  elif (png):
    plt.savefig('VBandBrightLimit.png')
  else:
    plt.show()
Ejemplo n.º 3
0
def get_gaia_bp_and_rp(v, v_minus_i):

    gminusv = transformations.gminvFromVmini(v_minus_i)
    g = gminusv + v

    gminusbp = vminusi_to_gminusbp(v_minus_i)
    gminusrp = vminusi_to_gminusrp(v_minus_i)

    bp = g - gminusbp
    rp = g - gminusrp

    return bp, rp
Ejemplo n.º 4
0
def makePlot(pdf=False, png=False):
    """
  Plot relative parallax errors as a function of distance for stars of a given spectral type.

  Parameters
  ----------

  args - command line arguments
  """
    logdistancekpc = np.linspace(-1, np.log10(20.0), 100)
    sptVabsAndVmini = OrderedDict([
        ('K0V', (5.58, 0.87)), ('G5V', (4.78, 0.74)), ('G0V', (4.24, 0.67)),
        ('F5V', (3.50, 0.50)), ('F0V', (2.98, 0.38)), ('RC', (0.8, 1.0))
    ])
    lines = {}

    fig = plt.figure(figsize=(10, 6.5))
    currentAxis = plt.gca()

    for spt in sptVabsAndVmini.keys():
        vmag = sptVabsAndVmini[spt][0] + 5.0 * logdistancekpc + 10.0
        indices = (vmag > 14) & (vmag < 16)
        gmag = vmag + gminvFromVmini(sptVabsAndVmini[spt][1])
        parerrors = parallaxErrorSkyAvg(gmag, sptVabsAndVmini[spt][1])
        relparerrors = parerrors * 10**logdistancekpc / 1000.0
        plt.loglog(10**logdistancekpc, relparerrors, '--k', lw=1)
        plt.loglog(10**logdistancekpc[indices],
                   relparerrors[indices],
                   '-',
                   label=spt)
    plt.xlim(0.1, 20.0)
    plt.ylim(0.001, 0.5)
    plt.text(0.9,
             0.05,
             'Colours indicate $14<V<16$',
             horizontalalignment='right',
             verticalalignment='bottom',
             transform=currentAxis.transAxes)
    plt.legend(loc=2)
    plt.xlabel('distance [kpc]')
    plt.ylabel('$\\sigma_\\varpi/\\varpi$')
    plt.grid(which='both')

    if (args['pdfOutput']):
        plt.savefig('RelativeParallaxErrorsVsDist.pdf')
    elif (args['pngOutput']):
        plt.savefig('RelativeParallaxErrorsVsDist.png')
    else:
        plt.show()
Ejemplo n.º 5
0
def calcParallaxError(args):
    """
  Calculate the parallax error for the given input source magnitude and colour.

  :argument args: command line arguments
  """
    gmag = float(args['gmag'])
    vmini = float(args['vmini'])
    sigmaPar = parallaxErrorSkyAvg(gmag, vmini)
    gminv = gminvFromVmini(vmini)
    print(("G = {0}".format(gmag)))
    print(("V = {0}".format(gmag - gminv)))
    print(("(V-I) = {0}".format(vmini)))
    print(("(G-V) = {0}".format(gminv)))
    print(("standard error = {0} muas".format(sigmaPar)))
Ejemplo n.º 6
0
def calcParallaxError(args):
  """
  Calculate the parallax error for the given input source magnitude and colour.

  :argument args: command line arguments
  """
  gmag=float(args['gmag'])
  vmini=float(args['vmini'])
  sigmaPar=parallaxErrorSkyAvg(gmag, vmini)
  gminv=gminvFromVmini(vmini)
  print("G = {0}".format(gmag))
  print("V = {0}".format(gmag-gminv))
  print("(V-I) = {0}".format(vmini))
  print("(G-V) = {0}".format(gminv))
  print("standard error = {0} muas".format(sigmaPar))
def makePlot(pdf=False, png=False):
  """
  Plot relative parallax errors as a function of distance for stars of a given spectral type.

  Parameters
  ----------

  args - command line arguments
  """
  logdistancekpc = np.linspace(-1,np.log10(20.0),100)
  sptVabsAndVmini=OrderedDict([('K0V',(5.58,0.87)), ('G5V',(4.78,0.74)), ('G0V',(4.24,0.67)),
    ('F5V',(3.50,0.50)), ('F0V',(2.98,0.38)), ('RC',(0.8,1.0))])
  lines={}

  fig=plt.figure(figsize=(10,6.5))
  currentAxis=plt.gca()

  for spt in sptVabsAndVmini.keys():
    vmag=sptVabsAndVmini[spt][0]+5.0*logdistancekpc+10.0
    indices=(vmag>14) & (vmag<16)
    gmag=vmag+gminvFromVmini(sptVabsAndVmini[spt][1])
    parerrors=parallaxErrorSkyAvg(gmag,sptVabsAndVmini[spt][1])
    relparerrors=parerrors*10**logdistancekpc/1000.0
    plt.loglog(10**logdistancekpc, relparerrors,'--k',lw=1)
    plt.loglog(10**logdistancekpc[indices], relparerrors[indices],'-',label=spt)
  plt.xlim(0.1,20.0)
  plt.ylim(0.001,0.5)
  plt.text(0.9, 0.05,'Colours indicate $14<V<16$',
     horizontalalignment='right',
     verticalalignment='bottom',
     transform = currentAxis.transAxes)
  plt.legend(loc=2)
  plt.xlabel('distance [kpc]')
  plt.ylabel('$\\sigma_\\varpi/\\varpi$')
  plt.grid(which='both')
  
  if (args['pdfOutput']):
    plt.savefig('RelativeParallaxErrorsVsDist.pdf')
  elif (args['pngOutput']):
    plt.savefig('RelativeParallaxErrorsVsDist.png')
  else:
    plt.show()
def makePlot(gmag, pdf=False, png=False, rvs=False):
  """
  Make a plot of a Mv vs (V-I) colour magnitude diagram containing lines of constant distance for stars
  at G=20. This will give an idea of the reach of Gaia.

  Parameters
  ----------

  args - command line arguments
  """
  vmini = np.linspace(-0.5,4.0,100)
  if (rvs):
    gminv = -vminGrvsFromVmini(vmini)
  else:
    gminv = gminvFromVmini(vmini)
  mvlimit100pc = gmag-5.0*np.log10(100.0)+5.0-gminv
  mvlimit1kpc = gmag-5.0*np.log10(1000.0)+5.0-gminv
  mvlimit10kpc = gmag-5.0*np.log10(10000.0)+5.0-gminv

  fig=plt.figure(figsize=(8,8))
  plt.plot(vmini,mvlimit100pc,'b')
  plt.text(vmini[50]-0.4,mvlimit100pc[50],"$d=100$ pc", horizontalalignment='right', va='top')
  plt.plot(vmini,mvlimit1kpc,'r')
  plt.text(vmini[50]-0.4,mvlimit1kpc[50],"$d=1000$ pc", horizontalalignment='right', va='top')
  plt.plot(vmini,mvlimit10kpc,'g')
  plt.text(vmini[50]-0.4,mvlimit10kpc[50],"$d=10000$ pc", horizontalalignment='right', va='top')
  ax=plt.gca()
  ax.set_ylim(ax.get_ylim()[::-1])
  plt.xlabel("$(V-I)$")
  plt.ylabel("$M_V$")
  if (rvs):
    plt.title("Distance limits for $G_\\mathrm{RVS}"+"={0}$".format(gmag))
  else:
    plt.title("Distance limits for $G={0}$".format(gmag))
  
  if (args['pdfOutput']):
    plt.savefig('GaiaSurveyLimits.pdf')
  elif (args['pngOutput']):
    plt.savefig('GaiaSurveyLimits.png')
  else:
    plt.show()
Ejemplo n.º 9
0
def gabsFromSpt(spt):
    """
  Obtain M_G (absolute magnitude in G-band) for the input spectral type.

  Parameters
  ----------
  
  spt - String representing the spectral type of the star.

  Returns
  -------
  
  The value of M_G.
  """
    if spt in _sptToVminiVabsDictionary:
        return vabsFromSpt(spt) + gminvFromVmini(vminiFromSpt(spt))
    else:
        message = "Unknown spectral type. Allowed values are: "
        for key in list(_sptToVminiVabsDictionary.keys()):
            message += key + " "
        raise Exception(message)
Ejemplo n.º 10
0
def gabsFromSpt(spt):
  """
  Obtain M_G (absolute magnitude in G-band) for the input spectral type.

  Parameters
  ----------
  
  spt - String representing the spectral type of the star.

  Returns
  -------
  
  The value of M_G.
  """
  if spt in _sptToVminiVabsDictionary:
    return vabsFromSpt(spt) + gminvFromVmini(vminiFromSpt(spt))
  else:
    message="Unknown spectral type. Allowed values are: "
    for key in _sptToVminiVabsDictionary.keys():
      message += key+" "
    raise Exception(message)
Ejemplo n.º 11
0
def make_gaia_observables(desi_table, dust='galaxia'):
    """
    """
    import pygaia
    import pygaia.errors.astrometric as gaia_astro
    import pygaia.errors.spectroscopic as gaia_spectro
    import pygaia.errors.photometric as gaia_photo

    np.random.seed(2019)
    gaia_table = Table()

    # Intrinsic heliocentric distance in parsecs
    d_parsecs = desi_table['d_helio'] * 1000.0

    # Heliocentric RV in km/s
    v_helio_kms = desi_table['v_helio']

    # Intrinsic photometry (using values without extinction)
    g = desi_table['SDSSg_true_nodust']
    r = desi_table['SDSSr_true_nodust']
    i = desi_table['SDSSi_true_nodust']

    # Lupton conversions
    magV_nodust = g - 0.5784 * (g - r) - 0.0038
    magI_nodust = r - 1.2444 * (r - i) - 0.3820

    gaia_table.add_column(
        Column(
            magV_nodust,
            name='V_Lupton_nodust',
            unit=1.0,
            description=
            'J-C V-band magnitude converted from SDSS g, gmr following Lupton 2005'
        ))
    gaia_table.add_column(
        Column(
            magI_nodust,
            name='I_Lupton_nodust',
            unit=1.0,
            description=
            'J-C I-band magnitude converted from SDSS r, rmi following Lupton 2005'
        ))

    # Add extinction back (currently in a poor way!). If we care in detail we
    # should know exactly which V and I pygaia wants!
    if dust == 'galaxia':
        # Galaxia dust equations use E(B-V) and coefficients Am/E(B-V).
        #
        # E_schelgel is seletive absorption to star in fiducial bands (V and B in this case).
        #
        #       Am = E_schlegel * A_over_EBV[band]
        # mag_true = mag_nodust + Am
        #
        # Hence:
        # mag_nodust = mag_true - E_schelgel*A_over_EBV[band]

        # Extinction coefficients for SDSS from galaxia documentation
        # These are Am/E(B-V) for Rv = 3.1 according to the Finkbeiner 99 law.
        # These give the coefficients to use with E(B-V)_Schelgel get reddenings
        # consistent with S&F 2011 and Schlafly 2010.
        ext_coeffs_ctio = {'V': 3.240, 'I': 1.962}

        magV = magV_nodust + desi_table['ABV'] * ext_coeffs_ctio['V']
        magI = magI_nodust + desi_table['ABV'] * ext_coeffs_ctio['I']

    elif dust == 'galfast':
        # GalFast dust equations use Ar and coefficients Am/Ar.
        # Am0 is total absorption to star in fiducial band (r, in this case).
        #
        #       Am = Am0 * reddening[band]
        # mag_true = mag_nodust + Am
        #
        # Hence:
        # mag_nodust = mag_true - Am0*reddening[band]

        Ar_coeffs_ctio = {'V': 1.1800, 'I': 0.5066}

        magV = magV_nodust + desi_table['Ar'] * Ar_coeffs_ctio['V']
        magI = magI_nodust + desi_table['Ar'] * Ar_coeffs_ctio['I']

    gaia_table.add_column(
        Column(
            magV,
            name='V_Lupton',
            unit=1.0,
            description=
            'J-C V-band magnitude converted from SDSS g, gmr following Lupton 2005, with extinction'
        ))
    gaia_table.add_column(
        Column(
            magI,
            name='I_Lupton',
            unit=1.0,
            description=
            'J-C I-band magnitude converted from SDSS r, rmi following Lupton 2005, with extinction'
        ))

    # Gaia routines need this colour as observed (something to do with PSF size)
    VminI = magV - magI
    from pygaia.photometry.transformations import gminvFromVmini, vminGrvsFromVmini

    # Calculate the value of (G-V) from (V-I)
    # Should this be the true or extincted V-I?
    GmV = gminvFromVmini(VminI)
    GmVrvs = vminGrvsFromVmini(VminI)
    magG = GmV + magV
    magGrvs = GmVrvs + magV

    gaia_table.add_column(
        Column(magV,
               name='G_gaia',
               unit=1.0,
               description='Gaia G apparent magnitude (pygaia)'))
    gaia_table.add_column(
        Column(magI,
               name='G_gaia_rvs',
               unit=1.0,
               description='Gaia G apparent magnitude for RVS (pygaia)'))

    # Sky coordinates and intrinsic PMs
    ra = desi_table['RA']  # Degrees
    dec = desi_table['DEC']  # Degrees
    pm_ra = desi_table['pm_RA']  # mas/yr
    pm_dec = desi_table['pm_DEC']  # mas/yr

    import pygaia.astrometry.coordinates as gaia_coordinates
    matrix_equ_to_ecl = gaia_coordinates.Transformations.ICRS2ECL
    equ_to_ecl = gaia_coordinates.CoordinateTransformation(matrix_equ_to_ecl)

    # Note input in radians and output in radians. This is only used for input
    # into the proper motion error routine.
    ecl_lambda, ecl_beta = equ_to_ecl.transformSkyCoordinates(
        ra * np.pi / 180.0, dec * np.pi / 180.0)

    # The error in mu_alpha* and the error in mu_delta, in that order, in
    # micro-arcsecond/year. The * on mu_alpha* indicates
    # mu_alpha*=mu_alpha*cos(delta).  These are in MICRO arcsec/yr so convert
    # to MILLI arcsec/yr.
    mu_alpha_star_err, mu_delta_err = gaia_astro.properMotionError(
        magG, VminI, ecl_beta)

    mu_alpha_star_err = mu_alpha_star_err / 1000.0
    mu_delta_err = mu_delta_err / 1000.0

    gaia_table.add_column(
        Column(
            mu_alpha_star_err,
            name='pm_RA_gaia_error',
            unit=1.0,
            description=
            'Gaia error on proper motion in RA (mu_alpha_star; pygaia) [mas/yr]'
        ))
    gaia_table.add_column(
        Column(
            mu_delta_err,
            name='pm_DEC_gaia_error',
            unit=1.0,
            description=
            'Gaia error on proper motion in DEC (mu_delta; pygaia) [mas/yr]'))

    # Error-convolved proper motions. Question here whether pm_ra from Galfast
    # is mu_alpha or mu_alpha_star. Give Mario the benefit of the doubt and
    # assume it is mu_alpha_star.
    GALFAST_PMRA_IS_MU_ALPHA_STAR = True
    if GALFAST_PMRA_IS_MU_ALPHA_STAR:
        RA_FIX_FACTOR = 1.0
    else:
        RA_FIX_FACTOR = np.cos(dec * np.pi / 180.0)

    gaia_mu_alpha_star = np.random.normal(pm_ra * RA_FIX_FACTOR,
                                          mu_alpha_star_err)
    gaia_mu_delta = np.random.normal(pm_dec, mu_delta_err)

    gaia_table.add_column(
        Column(
            gaia_mu_alpha_star,
            name='pm_RA_star_gaia',
            unit=1.0,
            description=
            'Proper motion in RA convolved with Gaia error (mu_alpha_star; pygaia) [mas/yr]'
        ))
    gaia_table.add_column(
        Column(
            gaia_mu_delta,
            name='pm_DEC_gaia',
            unit=1.0,
            description=
            'Proper motion in DEC convolved with Gaia error (mu_delta; pygaia) [mas/yr]'
        ))

    # True parallax in **milli-arcsec**
    true_parallax_arcsec = 1.0 / d_parsecs
    true_parallax_milliarcsec = true_parallax_arcsec * 1e3

    # Pygaia error on parallax is returned in micro-arcsec
    # Convert to **milli-arcsec**
    MICRO_TO_MILLI = 1.0 / 1e3
    gaia_parallax_err_milliarcsec = gaia_astro.parallaxError(
        magG, VminI, ecl_beta) * MICRO_TO_MILLI

    # Error convolved parallax
    gaia_parallax_milliarcsec = np.random.normal(
        true_parallax_milliarcsec, gaia_parallax_err_milliarcsec)

    gaia_table.add_column(
        Column(gaia_parallax_err_milliarcsec,
               name='parallax_gaia_error',
               unit=1.0,
               description='Gaia error on parallax (pygaia) [mas]'))

    gaia_table.add_column(
        Column(
            gaia_parallax_milliarcsec,
            name='parallax_gaia',
            unit=1.0,
            description='Parallax convolved with Gaia error (pygaia) [mas]'))

    # Error convolved RV
    for spectype in ['G0V', 'F0V', 'K1III', 'K1IIIMP']:
        gaia_rv_error_kms = gaia_spectro.vradErrorSkyAvg(magV, spectype)
        gaia_rv_kms = np.random.normal(v_helio_kms, gaia_rv_error_kms)

        gaia_table.add_column(
            Column(
                gaia_rv_error_kms,
                name='v_helio_gaia_error_%s' % (spectype),
                unit=1.0,
                description=
                'Gaia error on heliocentric radial velocity assuming star is type %s (pygaia) [km/s]'
                % (spectype)))

        gaia_table.add_column(
            Column(
                gaia_rv_kms,
                name='v_helio_gaia_%s' % (spectype),
                unit=1.0,
                description=
                'Heliocentric radial velocity convolved with Gaia error assuming star is type %s (pygaia) [km/s]'
                % (spectype)))

    return gaia_table
Ejemplo n.º 12
0
def makePlot(args):
  """
  Make the plot with parallax horizons. The plot shows V-band magnitude vs distance for a number of
  spectral types and over the range 5.7<G<20. In addition a set of crudely drawn contours show the points
  where 0.1, 1, and 10 per cent relative parallax accracy are reached.

  Parameters
  ----------
  
  args - Command line arguments.
  """
  distances = 10.0**np.linspace(1,6,10001)
  av = args['extinction']
  ai = 0.479*av #Cardelli et al R=3.1

  spts = ['B0I', 'B1V', 'G2V', 'K4V', 'M0V', 'M6V', 'K1III', 'M0III']
  pointOnePercD = []
  pointOnePercV = []
  onePercD = []
  onePercV = []
  tenPercD = []
  tenPercV = []
  vabsPointOnePerc = []
  vabsOnePerc = []
  vabsTenPerc = []

  fig=plt.figure(figsize=(11,7.8))
  deltaHue = 240.0/(len(spts)-1)
  hues = (240.0-np.arange(len(spts))*deltaHue)/360.0
  hsv=np.zeros((1,1,3))
  hsv[0,0,1]=1.0
  hsv[0,0,2]=0.9
  for hue,spt in zip(hues, spts):
    hsv[0,0,0]=hue
    vmags = vabsFromSpt(spt)+5.0*np.log10(distances)-5.0+av
    vmini=vminiFromSpt(spt)+av-ai
    #gmags = gabsFromSpt(spt)+5.0*np.log10(distances)-5.0
    gmags = vmags + gminvFromVmini(vmini)
    relParErr = parallaxErrorSkyAvg(gmags,vmini)*distances/1.0e6
    observed = (gmags>=5.7) & (gmags<=20.0)
    relParErrObs = relParErr[observed]
    # Identify the points where the relative parallax accuracy is 0.1, 1, or 10 per cent.
    if (relParErrObs.min()<0.001):
      index = len(relParErrObs[relParErrObs<=0.001])-1
      pointOnePercD.append(distances[observed][index])
      pointOnePercV.append(vmags[observed][index])
      vabsPointOnePerc.append(vabsFromSpt(spt))
    if (relParErrObs.min()<0.01):
      index = len(relParErrObs[relParErrObs<=0.01])-1
      onePercD.append(distances[observed][index])
      onePercV.append(vmags[observed][index])
      vabsOnePerc.append(vabsFromSpt(spt))
    if (relParErrObs.min()<0.1):
      index = len(relParErrObs[relParErrObs<=0.1])-1
      tenPercD.append(distances[observed][index])
      tenPercV.append(vmags[observed][index])
      vabsTenPerc.append(vabsFromSpt(spt))
    plt.semilogx(distances[observed], vmags[observed], '-', label=spt, color=hsv_to_rgb(hsv)[0,0,:])
    if (spt=='B0I'):
      plt.text(distances[observed][-1]-1.0e5, vmags[observed][-1], spt, horizontalalignment='right',
          verticalalignment='bottom', fontsize=14)
    else:
      plt.text(distances[observed][-1], vmags[observed][-1], spt, horizontalalignment='center',
          verticalalignment='bottom', fontsize=14)

  # Draw the "contours" of constant relative parallax accuracy.
  pointOnePercD = np.array(pointOnePercD)
  pointOnePercV = np.array(pointOnePercV)
  indices = np.argsort(vabsPointOnePerc)
  plt.semilogx(pointOnePercD[indices],pointOnePercV[indices],'k--')
  plt.text(pointOnePercD[indices][-1]*1.2,pointOnePercV[indices][-1]-2.5,"$0.1$\\%", ha='right', size=16,
      bbox=dict(boxstyle="round, pad=0.3", ec=(0.0, 0.0, 0.0), fc=(1.0, 1.0, 1.0),))

  onePercD = np.array(onePercD)
  onePercV = np.array(onePercV)
  indices = np.argsort(vabsOnePerc)
  plt.semilogx(onePercD[indices],onePercV[indices],'k--')
  plt.text(onePercD[indices][-1]*1.2,onePercV[indices][-1]-2.5,"$1$\\%", ha='right', size=16,
      bbox=dict(boxstyle="round, pad=0.3", ec=(0.0, 0.0, 0.0), fc=(1.0, 1.0, 1.0),))

  tenPercD = np.array(tenPercD)
  tenPercV = np.array(tenPercV)
  indices = np.argsort(vabsTenPerc)
  plt.semilogx(tenPercD[indices],tenPercV[indices],'k--')
  plt.text(tenPercD[indices][-1]*1.5,tenPercV[indices][-1]-2.5,"$10$\\%", ha='right', size=16,
      bbox=dict(boxstyle="round, pad=0.3", ec=(0.0, 0.0, 0.0), fc=(1.0, 1.0, 1.0),))

  plt.title('Parallax relative accuracy horizons ($A_V={0}$)'.format(av))

  plt.xlabel('Distance [pc]')
  plt.ylabel('V')
  plt.grid()
  #leg=plt.legend(loc=4, fontsize=14, labelspacing=0.5)
  plt.ylim(5,26)
  
  basename='ParallaxHorizons'
  if (args['pdfOutput']):
    plt.savefig(basename+'.pdf')
  elif (args['pngOutput']):
    plt.savefig(basename+'.png')
  else:
    plt.show()
Ejemplo n.º 13
0
def makePlot(args):
  """
  Make the plot with proper motion performance predictions. The predictions are for the TOTAL proper
  motion under the assumption of equal components mu_alpha* and mu_delta.

  :argument args: command line arguments
  """
  gmag=np.linspace(5.7,20.0,101)

  vminiB1V=vminiFromSpt('B1V')
  vminiG2V=vminiFromSpt('G2V')
  vminiM6V=vminiFromSpt('M6V')
  
  vmagB1V=gmag-gminvFromVmini(vminiB1V)
  vmagG2V=gmag-gminvFromVmini(vminiG2V)
  vmagM6V=gmag-gminvFromVmini(vminiM6V)

  sigmualphaB1V, sigmudeltaB1V = properMotionErrorSkyAvg(gmag,vminiB1V)
  sigmuB1V = np.sqrt(0.5*sigmualphaB1V**2+0.5*sigmudeltaB1V**2)
  sigmualphaB1V, sigmudeltaB1V = properMotionMinError(gmag,vminiB1V)
  sigmuB1Vmin = np.sqrt(0.5*sigmualphaB1V**2+0.5*sigmudeltaB1V**2)
  sigmualphaB1V, sigmudeltaB1V = properMotionMaxError(gmag,vminiB1V)
  sigmuB1Vmax = np.sqrt(0.5*sigmualphaB1V**2+0.5*sigmudeltaB1V**2)
  
  sigmualphaG2V, sigmudeltaG2V = properMotionErrorSkyAvg(gmag,vminiG2V)
  sigmuG2V = np.sqrt(0.5*sigmualphaG2V**2+0.5*sigmudeltaG2V**2)
  sigmualphaG2V, sigmudeltaG2V = properMotionMinError(gmag,vminiG2V)
  sigmuG2Vmin = np.sqrt(0.5*sigmualphaG2V**2+0.5*sigmudeltaG2V**2)
  sigmualphaG2V, sigmudeltaG2V = properMotionMaxError(gmag,vminiG2V)
  sigmuG2Vmax = np.sqrt(0.5*sigmualphaG2V**2+0.5*sigmudeltaG2V**2)
  
  sigmualphaM6V, sigmudeltaM6V = properMotionErrorSkyAvg(gmag,vminiM6V)
  sigmuM6V = np.sqrt(0.5*sigmualphaM6V**2+0.5*sigmudeltaM6V**2)
  sigmualphaM6V, sigmudeltaM6V = properMotionMinError(gmag,vminiM6V)
  sigmuM6Vmin = np.sqrt(0.5*sigmualphaM6V**2+0.5*sigmudeltaM6V**2)
  sigmualphaM6V, sigmudeltaM6V = properMotionMaxError(gmag,vminiM6V)
  sigmuM6Vmax = np.sqrt(0.5*sigmualphaM6V**2+0.5*sigmudeltaM6V**2)
  
  fig=plt.figure(figsize=(10,6.5))
  
  if (args['gmagAbscissa']):
    plt.semilogy(gmag, sigmuB1V, 'b', label='B1V')
    plt.semilogy(gmag, sigmuG2V, 'g', label='G2V')
    plt.semilogy(gmag, sigmuM6V, 'r', label='M6V')
    plt.xlim((5,20))
    plt.ylim((1,500))
    plt.legend(loc=4)
  else:
    ax=fig.add_subplot(111)
    plt.semilogy(vmagB1V, sigmuB1V, 'b', label='B1V')
    #plt.semilogy(vmagG2V, sigmuG2V, 'g', label='G2V')
    plt.semilogy(vmagM6V, sigmuM6V, 'r', label='M6V')
    plt.fill_between(vmagB1V, sigmuB1Vmin, sigmuB1Vmax, color='b', alpha=0.3)
    plt.fill_between(vmagM6V, sigmuM6Vmin, sigmuM6Vmax, color='r', alpha=0.3)
    plt.xlim((5,22.5))
    plt.ylim((1,500))
    plt.text(17.5,100,'B1V',color='b')
    plt.text(18,10,'M6V',color='r')
    plt.text(7,11,'calibration noise floor', size=12, bbox=dict(boxstyle="round,pad=0.3",
                       ec=(0.0, 0.0, 0.0),
                       fc=(1.0, 1.0, 1.0),
                       ))
    plt.text(14.75,50,'photon noise', rotation=45, size=12, bbox=dict(boxstyle="round,pad=0.3",
                       ec=(0.0, 0.0, 0.0),
                       fc=(1.0, 1.0, 1.0),
                       ))
    ax.annotate('non-uniformity\nover the sky', xy=(21.5, 80),  xycoords='data',
                  xytext=(21.5,30), textcoords='data', ha='center', size='12',
                  bbox=dict(boxstyle="round,pad=0.3",ec=(0,0,0),fc=(1,1,1)),
                  arrowprops=dict(facecolor='black', shrink=0.15, width=1,
                    headwidth=6),
                  horizontalalignment='right', verticalalignment='top',
                  )
    ax.annotate('', xy=(21.5, 170),  xycoords='data',
                  xytext=(21.5,380), textcoords='data', ha='center', size='12',
                  arrowprops=dict(facecolor='black', shrink=0.15, width=1,
                    headwidth=6),
                  horizontalalignment='right', verticalalignment='bottom',
                  )
  
  plt.xticks(np.arange(6,24,2))
  ax = plt.gca().yaxis 
  ax.set_major_formatter(matplotlib.ticker.ScalarFormatter())
  plt.ticklabel_format(axis='y',style='plain')
  plt.grid(which='both')
  plt.xlabel('$V$ [mag]')
  plt.ylabel('End-of-mission $\\sigma_\\mu$ [$\mu$as/yr]')
  
  basename = 'ProperMotionErrors'
  if (args['pdfOutput']):
    plt.savefig(basename+'.pdf')
  elif (args['pngOutput']):
    plt.savefig(basename+'.png')
  else:
    plt.show()
Ejemplo n.º 14
0
def makePlot(args):
    """
  Make the plot with parallax performance predictions.

  :argument args: command line arguments
  """
    gmag = np.linspace(5.7, 20.0, 101)

    vminiB1V = vminiFromSpt('B1V')
    vminiG2V = vminiFromSpt('G2V')
    vminiM6V = vminiFromSpt('M6V')

    vmagB1V = gmag - gminvFromVmini(vminiB1V)
    vmagG2V = gmag - gminvFromVmini(vminiG2V)
    vmagM6V = gmag - gminvFromVmini(vminiM6V)

    sigparB1V = parallaxErrorSkyAvg(gmag, vminiB1V)
    sigparB1Vmin = parallaxMinError(gmag, vminiB1V)
    sigparB1Vmax = parallaxMaxError(gmag, vminiB1V)

    sigparG2V = parallaxErrorSkyAvg(gmag, vminiG2V)
    sigparG2Vmin = parallaxMinError(gmag, vminiG2V)
    sigparG2Vmax = parallaxMaxError(gmag, vminiG2V)

    sigparM6V = parallaxErrorSkyAvg(gmag, vminiM6V)
    sigparM6Vmin = parallaxMinError(gmag, vminiM6V)
    sigparM6Vmax = parallaxMaxError(gmag, vminiM6V)

    fig = plt.figure(figsize=(10, 6.5))

    if (args['gmagAbscissa']):
        plt.semilogy(gmag, sigparB1V, 'b', label='B1V')
        plt.semilogy(gmag, sigparG2V, 'g', label='G2V')
        plt.semilogy(gmag, sigparM6V, 'r', label='M6V')
        plt.xlim((5, 20))
        plt.ylim((4, 1000))
        plt.legend(loc=4)
        plt.xlabel('$G$ [mag]')
    else:
        ax = fig.add_subplot(111)
        plt.semilogy(vmagB1V, sigparB1V, 'b', label='B1V')
        #plt.semilogy(vmagG2V, sigparG2V, 'g', label='G2V')
        plt.semilogy(vmagM6V, sigparM6V, 'r', label='M6V')
        plt.fill_between(vmagB1V,
                         sigparB1Vmin,
                         sigparB1Vmax,
                         color='b',
                         alpha=0.3)
        plt.fill_between(vmagM6V,
                         sigparM6Vmin,
                         sigparM6Vmax,
                         color='r',
                         alpha=0.3)
        plt.xlim((5, 22.5))
        plt.ylim((4, 1000))
        plt.text(17.2, 190, 'B1V', color='b')
        plt.text(18, 20, 'M6V', color='r')
        plt.xlabel('$V$ [mag]')
        plt.text(7,
                 17,
                 'calibration noise floor',
                 size=12,
                 bbox=dict(
                     boxstyle="round,pad=0.3",
                     ec=(0.0, 0.0, 0.0),
                     fc=(1.0, 1.0, 1.0),
                 ))
        plt.text(14.75,
                 80,
                 'photon noise',
                 rotation=45,
                 size=12,
                 bbox=dict(
                     boxstyle="round,pad=0.3",
                     ec=(0.0, 0.0, 0.0),
                     fc=(1.0, 1.0, 1.0),
                 ))
        ax.annotate(
            'non-uniformity\nover the sky',
            xy=(21.5, 320),
            xycoords='data',
            xytext=(21.5, 80),
            textcoords='data',
            ha='center',
            size='12',
            bbox=dict(boxstyle="round,pad=0.3", ec=(0, 0, 0), fc=(1, 1, 1)),
            arrowprops=dict(facecolor='black',
                            shrink=0.15,
                            width=1,
                            headwidth=6),
            horizontalalignment='right',
            verticalalignment='top',
        )
        ax.annotate(
            '',
            xy=(21.5, 500),
            xycoords='data',
            xytext=(21.5, 950),
            textcoords='data',
            ha='center',
            size='12',
            arrowprops=dict(facecolor='black',
                            shrink=0.15,
                            width=1,
                            headwidth=6),
            horizontalalignment='right',
            verticalalignment='bottom',
        )

    plt.xticks(np.arange(6, 24, 2))
    ax = plt.gca().yaxis
    ax.set_major_formatter(matplotlib.ticker.ScalarFormatter())
    plt.ticklabel_format(axis='y', style='plain')
    plt.grid(which='both')
    plt.ylabel('End-of-mission parallax standard error [$\mu$as]')

    if (args['pdfOutput']):
        plt.savefig('ParallaxErrors.pdf')
    elif (args['pngOutput']):
        plt.savefig('ParallaxErrors.png')
    else:
        plt.show()
def makePlot(args):
    """
  Make the plot with proper motion performance predictions. The predictions are for the TOTAL proper
  motion under the assumption of equal components mu_alpha* and mu_delta.

  :argument args: command line arguments
  """
    gmag = np.linspace(5.7, 20.0, 101)

    vminiB1V = vminiFromSpt('B1V')
    vminiG2V = vminiFromSpt('G2V')
    vminiM6V = vminiFromSpt('M6V')

    vmagB1V = gmag - gminvFromVmini(vminiB1V)
    vmagG2V = gmag - gminvFromVmini(vminiG2V)
    vmagM6V = gmag - gminvFromVmini(vminiM6V)

    sigmualphaB1V, sigmudeltaB1V = properMotionErrorSkyAvg(gmag, vminiB1V)
    sigmuB1V = np.sqrt(0.5 * sigmualphaB1V**2 + 0.5 * sigmudeltaB1V**2)
    sigmualphaB1V, sigmudeltaB1V = properMotionMinError(gmag, vminiB1V)
    sigmuB1Vmin = np.sqrt(0.5 * sigmualphaB1V**2 + 0.5 * sigmudeltaB1V**2)
    sigmualphaB1V, sigmudeltaB1V = properMotionMaxError(gmag, vminiB1V)
    sigmuB1Vmax = np.sqrt(0.5 * sigmualphaB1V**2 + 0.5 * sigmudeltaB1V**2)

    sigmualphaG2V, sigmudeltaG2V = properMotionErrorSkyAvg(gmag, vminiG2V)
    sigmuG2V = np.sqrt(0.5 * sigmualphaG2V**2 + 0.5 * sigmudeltaG2V**2)
    sigmualphaG2V, sigmudeltaG2V = properMotionMinError(gmag, vminiG2V)
    sigmuG2Vmin = np.sqrt(0.5 * sigmualphaG2V**2 + 0.5 * sigmudeltaG2V**2)
    sigmualphaG2V, sigmudeltaG2V = properMotionMaxError(gmag, vminiG2V)
    sigmuG2Vmax = np.sqrt(0.5 * sigmualphaG2V**2 + 0.5 * sigmudeltaG2V**2)

    sigmualphaM6V, sigmudeltaM6V = properMotionErrorSkyAvg(gmag, vminiM6V)
    sigmuM6V = np.sqrt(0.5 * sigmualphaM6V**2 + 0.5 * sigmudeltaM6V**2)
    sigmualphaM6V, sigmudeltaM6V = properMotionMinError(gmag, vminiM6V)
    sigmuM6Vmin = np.sqrt(0.5 * sigmualphaM6V**2 + 0.5 * sigmudeltaM6V**2)
    sigmualphaM6V, sigmudeltaM6V = properMotionMaxError(gmag, vminiM6V)
    sigmuM6Vmax = np.sqrt(0.5 * sigmualphaM6V**2 + 0.5 * sigmudeltaM6V**2)

    fig = plt.figure(figsize=(10, 6.5))

    if (args['gmagAbscissa']):
        plt.semilogy(gmag, sigmuB1V, 'b', label='B1V')
        plt.semilogy(gmag, sigmuG2V, 'g', label='G2V')
        plt.semilogy(gmag, sigmuM6V, 'r', label='M6V')
        plt.xlim((5, 20))
        plt.ylim((1, 500))
        plt.legend(loc=4)
    else:
        ax = fig.add_subplot(111)
        plt.semilogy(vmagB1V, sigmuB1V, 'b', label='B1V')
        #plt.semilogy(vmagG2V, sigmuG2V, 'g', label='G2V')
        plt.semilogy(vmagM6V, sigmuM6V, 'r', label='M6V')
        plt.fill_between(vmagB1V,
                         sigmuB1Vmin,
                         sigmuB1Vmax,
                         color='b',
                         alpha=0.3)
        plt.fill_between(vmagM6V,
                         sigmuM6Vmin,
                         sigmuM6Vmax,
                         color='r',
                         alpha=0.3)
        plt.xlim((5, 22.5))
        plt.ylim((1, 500))
        plt.text(17.5, 100, 'B1V', color='b')
        plt.text(18, 10, 'M6V', color='r')
        plt.text(7,
                 11,
                 'calibration noise floor',
                 size=12,
                 bbox=dict(
                     boxstyle="round,pad=0.3",
                     ec=(0.0, 0.0, 0.0),
                     fc=(1.0, 1.0, 1.0),
                 ))
        plt.text(14.75,
                 50,
                 'photon noise',
                 rotation=45,
                 size=12,
                 bbox=dict(
                     boxstyle="round,pad=0.3",
                     ec=(0.0, 0.0, 0.0),
                     fc=(1.0, 1.0, 1.0),
                 ))
        ax.annotate(
            'non-uniformity\nover the sky',
            xy=(21.5, 80),
            xycoords='data',
            xytext=(21.5, 30),
            textcoords='data',
            ha='center',
            size='12',
            bbox=dict(boxstyle="round,pad=0.3", ec=(0, 0, 0), fc=(1, 1, 1)),
            arrowprops=dict(facecolor='black',
                            shrink=0.15,
                            width=1,
                            headwidth=6),
            horizontalalignment='right',
            verticalalignment='top',
        )
        ax.annotate(
            '',
            xy=(21.5, 170),
            xycoords='data',
            xytext=(21.5, 380),
            textcoords='data',
            ha='center',
            size='12',
            arrowprops=dict(facecolor='black',
                            shrink=0.15,
                            width=1,
                            headwidth=6),
            horizontalalignment='right',
            verticalalignment='bottom',
        )

    plt.xticks(np.arange(6, 24, 2))
    ax = plt.gca().yaxis
    ax.set_major_formatter(matplotlib.ticker.ScalarFormatter())
    plt.ticklabel_format(axis='y', style='plain')
    plt.grid(which='both')
    plt.xlabel('$V$ [mag]')
    plt.ylabel('End-of-mission $\\sigma_\\mu$ [$\mu$as/yr]')

    basename = 'ProperMotionErrors'
    if (args['pdfOutput']):
        plt.savefig(basename + '.pdf')
    elif (args['pngOutput']):
        plt.savefig(basename + '.png')
    else:
        plt.show()
Ejemplo n.º 16
0
def main(argv):
    parser = argparse.ArgumentParser(
        description=
        "This Script downloads a besancon model including include_kinematics using the astroquery interface. Gaia DR2 parallax and proper motion sky-averaged uncertainties are derived using pygaia. Random errors corresponding to Gaia DR2 expectations can be added to the parallaxes and distances of the model output."
    )
    parser.add_argument('email', help='Your valid email address.')
    parser.add_argument('--ra_deg',
                        type=float,
                        default=10.,
                        help='RA in degrees')
    parser.add_argument('--dec_deg',
                        type=float,
                        default=0.,
                        help='Dec in degrees')
    parser.add_argument('--field_size_squaredegree',
                        type=float,
                        default=0.05,
                        help='Field size in squaredegrees.')
    parser.add_argument('--data_dir',
                        type=str,
                        default='',
                        help='Path to directory for table saving')
    parser.add_argument('--overwrite',
                        type=bool,
                        default=False,
                        help='Overwrite download from besancon server.')
    parser.add_argument(
        '--add_random_gaia_errors',
        type=bool,
        default=False,
        help=
        'Add random errors to parallax and PM assuming Gaia DR2 performances.')
    parser.add_argument(
        '--random_seed',
        type=int,
        default=None,
        help='numpy random seed for error simulation. Allows for repeatability.'
    )
    # parser.add_argument('--argument_dict', type=, default=None,
    #                     help='Dictionary of arguments passed to Besancon.query. See Besancon.query documentation for allowed values and format.')
    parser.add_argument(
        '--vmag_upper_limit',
        type=float,
        default=None,
        help='V mag upper limit passed to Besancon.query. Default is 18')

    args = parser.parse_args(argv)

    email = args.email

    # central pointing and field size
    ra_deg = args.ra_deg
    dec_deg = args.dec_deg
    field_size_squaredegree = args.field_size_squaredegree

    data_dir = args.data_dir
    overwrite = args.overwrite
    random_seed = args.random_seed
    add_random_gaia_errors = args.add_random_gaia_errors
    # argument_dict = args.argument_dict
    # vmag_limits = args.vmag_limits
    vmag_upper_limit = args.vmag_upper_limit

    galactic_latitude_deg = None
    galactic_longitude_deg = None

    if (galactic_latitude_deg is None) and (galactic_longitude_deg is None):
        equatorial_coordinates = SkyCoord(ra=ra_deg * u.deg,
                                          dec=dec_deg * u.deg)
        galactic_longitude_deg = equatorial_coordinates.galactic.l.value
        galactic_latitude_deg = equatorial_coordinates.galactic.b.value

    include_kinematics = True
    pm_in_lb = False  # flag to obtain proper motions in galactic coordinates instead of equatorial

    # include_kinematics options
    kwd = {}
    if (include_kinematics):
        kwd['cinem'] = 1
        kwd['sc'] = [
            [0, 0, 0]
        ] * 15  # changed default *9 to *15 to allow for kinematics to be downloaded
        # note: if you leave klee at zero you get no kinematics
        if (pm_in_lb):
            kwd['klee'] = 2  #l/b
        else:
            kwd['klee'] = 1  #ra/dec

    # merge two dictionaries of arguments
    # if argument_dict is not None:
    #     kwd = {**kwd, **argument_dict}
    # if vmag_limits is not None:
    #     kwd['mag_limits'] = {'V': vmag_limits}

    # execute the query and save into astropy table on disk
    table_file = os.path.join(
        data_dir, 'besancon_table_{:3.2f}_{:3.2f}_{:3.2f}.csv'.format(
            galactic_longitude_deg, galactic_latitude_deg,
            field_size_squaredegree))

    if (not os.path.isfile(table_file)) | (overwrite):
        if vmag_upper_limit is not None:
            # print(vmag_upper_limit)
            mag_limits = {'V': (10, vmag_upper_limit)}
            besancon_model = Besancon.query(glon=galactic_longitude_deg,
                                            glat=galactic_latitude_deg,
                                            email=email,
                                            retrieve_file=False,
                                            area=field_size_squaredegree,
                                            mag_limits=mag_limits,
                                            **kwd)
            # print('Faintest V magnitude = {}'.format(np.max(besancon_model['V'])))
        else:
            besancon_model = Besancon.query(glon=galactic_longitude_deg,
                                            glat=galactic_latitude_deg,
                                            email=email,
                                            retrieve_file=False,
                                            area=field_size_squaredegree,
                                            **kwd)
        besancon_model.write(table_file,
                             format='ascii.fixed_width',
                             delimiter=',',
                             bookend=False)
    else:
        besancon_model = Table.read(table_file,
                                    format='ascii.basic',
                                    delimiter=',')

    dr2_table_file = table_file.replace('besancon_', 'besancon_gaia_dr2_')

    # compute Gaia magnitude and color
    besancon_model['G-V'] = transformations.gminvFromVmini(
        besancon_model['V-I'])
    besancon_model['Gmag'] = besancon_model['G-V'] + besancon_model['V']
    besancon_model['BP-RP'] = vminusi_to_gaiacolor(besancon_model['V-I'])
    besancon_model['BP'], besancon_model['RP'] = get_gaia_bp_and_rp(
        besancon_model['V'], besancon_model['V-I'])
    # print(besancon_model['BP']-besancon_model['RP'] - besancon_model['BP-RP'])

    # compute expected DR2 errors, parallaxErrorSkyAvg is in microarcsec
    dr2_offset = -(60. - 22.) / 12.
    besancon_model['properMotionErrorSkyAvg_dr2_ra_maspyr'], besancon_model[
        'properMotionErrorSkyAvg_dr2_dec_maspyr'] = np.array(
            properMotionErrorSkyAvg(besancon_model['Gmag'].data,
                                    besancon_model['V-I'].data,
                                    extension=dr2_offset)) / 1000.
    besancon_model['parallaxErrorSkyAvg_dr2_mas'] = np.array(
        parallaxErrorSkyAvg(besancon_model['Gmag'],
                            besancon_model['V-I'],
                            extension=dr2_offset)) / 1000.

    besancon_model['parallax_mas'] = 1. / besancon_model[
        'Dist']  # 'Dist' is in kpc

    # coordinates are constant and equal to the central pointing in the standard output
    galactic_coords = SkyCoord('galactic',
                               l=besancon_model['l'],
                               b=besancon_model['b'],
                               unit='deg')
    besancon_model['ra_deg'] = galactic_coords.icrs.ra.value
    besancon_model['dec_deg'] = galactic_coords.icrs.dec.value

    if pm_in_lb is False:
        # mux,muy are in arcsec/century
        besancon_model['pm_ra*_maspyr'] = besancon_model['mux'] * 1000 / 100.
        besancon_model['pm_dec_maspyr'] = besancon_model['muy'] * 1000 / 100.

    if add_random_gaia_errors:
        # add random errors to parallax and PM assuming Gaia DR2 performances
        if random_seed is not None:
            np.random.seed(random_seed)
        besancon_model['parallax_mas'] += (
            np.random.normal(0., 1, len(besancon_model)) *
            besancon_model['parallaxErrorSkyAvg_dr2_mas'])
        if random_seed is not None:
            np.random.seed(random_seed + 1)
        besancon_model['pm_ra*_maspyr'] += (
            np.random.normal(0., 1, len(besancon_model)) *
            besancon_model['properMotionErrorSkyAvg_dr2_ra_maspyr'])
        if random_seed is not None:
            np.random.seed(random_seed + 2)
        besancon_model['pm_dec_maspyr'] += (
            np.random.normal(0., 1, len(besancon_model)) *
            besancon_model['properMotionErrorSkyAvg_dr2_dec_maspyr'])

    besancon_model.meta = {}
    besancon_model.write(dr2_table_file,
                         format='ascii.fixed_width',
                         delimiter=',',
                         bookend=False)
    print('Besancon model and Gaia DR2 performance simulation written to {}'.
          format(dr2_table_file))
Ejemplo n.º 17
0
def makePlot(args):
  """
  Make the plot with parallax performance predictions.

  :argument args: command line arguments
  """
  gmag=np.linspace(5.7,20.0,101)

  vminiB1V=vminiFromSpt('B1V')
  vminiG2V=vminiFromSpt('G2V')
  vminiM6V=vminiFromSpt('M6V')
  
  vmagB1V=gmag-gminvFromVmini(vminiB1V)
  vmagG2V=gmag-gminvFromVmini(vminiG2V)
  vmagM6V=gmag-gminvFromVmini(vminiM6V)
  
  sigparB1V=parallaxErrorSkyAvg(gmag,vminiB1V)
  sigparB1Vmin=parallaxMinError(gmag,vminiB1V)
  sigparB1Vmax=parallaxMaxError(gmag,vminiB1V)
  
  sigparG2V=parallaxErrorSkyAvg(gmag,vminiG2V)
  sigparG2Vmin=parallaxMinError(gmag,vminiG2V)
  sigparG2Vmax=parallaxMaxError(gmag,vminiG2V)
  
  sigparM6V=parallaxErrorSkyAvg(gmag,vminiM6V)
  sigparM6Vmin=parallaxMinError(gmag,vminiM6V)
  sigparM6Vmax=parallaxMaxError(gmag,vminiM6V)
  
  fig=plt.figure(figsize=(10,6.5))
  
  if (args['gmagAbscissa']):
    plt.semilogy(gmag, sigparB1V, 'b', label='B1V')
    plt.semilogy(gmag, sigparG2V, 'g', label='G2V')
    plt.semilogy(gmag, sigparM6V, 'r', label='M6V')
    plt.xlim((5,20))
    plt.ylim((4,1000))
    plt.legend(loc=4)
    plt.xlabel('$G$ [mag]')
  else:
    ax=fig.add_subplot(111)
    plt.semilogy(vmagB1V, sigparB1V, 'b', label='B1V')
    #plt.semilogy(vmagG2V, sigparG2V, 'g', label='G2V')
    plt.semilogy(vmagM6V, sigparM6V, 'r', label='M6V')
    plt.fill_between(vmagB1V, sigparB1Vmin, sigparB1Vmax, color='b', alpha=0.3)
    plt.fill_between(vmagM6V, sigparM6Vmin, sigparM6Vmax, color='r', alpha=0.3)
    plt.xlim((5,22.5))
    plt.ylim((4,1000))
    plt.text(17.2,190,'B1V',color='b')
    plt.text(18,20,'M6V',color='r')
    plt.xlabel('$V$ [mag]')
    plt.text(7,17,'calibration noise floor', size=12, bbox=dict(boxstyle="round,pad=0.3",
                       ec=(0.0, 0.0, 0.0),
                       fc=(1.0, 1.0, 1.0),
                       ))
    plt.text(14.75,80,'photon noise', rotation=45, size=12, bbox=dict(boxstyle="round,pad=0.3",
                       ec=(0.0, 0.0, 0.0),
                       fc=(1.0, 1.0, 1.0),
                       ))
    ax.annotate('non-uniformity\nover the sky', xy=(21.5, 320),  xycoords='data',
                  xytext=(21.5,80), textcoords='data', ha='center', size='12',
                  bbox=dict(boxstyle="round,pad=0.3",ec=(0,0,0),fc=(1,1,1)),
                  arrowprops=dict(facecolor='black', shrink=0.15, width=1,
                    headwidth=6),
                  horizontalalignment='right', verticalalignment='top',
                  )
    ax.annotate('', xy=(21.5, 500),  xycoords='data',
                  xytext=(21.5,950), textcoords='data', ha='center', size='12',
                  arrowprops=dict(facecolor='black', shrink=0.15, width=1,
                    headwidth=6),
                  horizontalalignment='right', verticalalignment='bottom',
                  )
  
  plt.xticks(np.arange(6,24,2))
  ax = plt.gca().yaxis 
  ax.set_major_formatter(matplotlib.ticker.ScalarFormatter())
  plt.ticklabel_format(axis='y',style='plain')
  plt.grid(which='both')
  plt.ylabel('End-of-mission parallax standard error [$\mu$as]')
  
  if (args['pdfOutput']):
    plt.savefig('ParallaxErrors.pdf')
  elif (args['pngOutput']):
    plt.savefig('ParallaxErrors.png')
  else:
    plt.show()
Ejemplo n.º 18
0
def makePlot(args):
    """
  Make the plot with photometry performance predictions.

  :argument args: command line arguments
  """
    gmag = np.linspace(3.0, 20.0, 171)

    vmini = args['vmini']

    vmag = gmag - gminvFromVmini(vmini)

    if args['eom']:
        sigmaG = gMagnitudeErrorEoM(gmag)
        sigmaGBp = bpMagnitudeErrorEoM(gmag, vmini)
        sigmaGRp = rpMagnitudeErrorEoM(gmag, vmini)
        yminmax = (1.0 - 4, 0.1)
    else:
        sigmaG = gMagnitudeError(gmag)
        sigmaGBp = bpMagnitudeError(gmag, vmini)
        sigmaGRp = rpMagnitudeError(gmag, vmini)
        yminmax = (1.0 - 4, 1)

    fig = plt.figure(figsize=(10, 6.5))

    if (args['vmagAbscissa']):
        plt.semilogy(vmag, sigmaG, 'k', label='$\\sigma_G$')
        plt.semilogy(vmag,
                     sigmaGBp,
                     'b',
                     label='$\\sigma_{G_\\mathrm{BP}}$' +
                     ' for $(V-I)={0}$'.format(vmini))
        plt.semilogy(vmag,
                     sigmaGRp,
                     'r',
                     label='$\\sigma_{G_\\mathrm{RP}}$' +
                     ' for $(V-I)={0}$'.format(vmini))
        plt.xlim((6, 20))
        #plt.ylim(yminmax)
        plt.legend(loc=0)
        plt.xlabel('$V$ [mag]')
    else:
        ax = fig.add_subplot(111)
        plt.semilogy(gmag, sigmaG, 'k', label='$\\sigma_G$')
        plt.semilogy(gmag,
                     sigmaGBp,
                     'b',
                     label='$\\sigma_{G_\\mathrm{BP}}$' +
                     ' for $(V-I)={0}$'.format(vmini))
        plt.semilogy(gmag,
                     sigmaGRp,
                     'r',
                     label='$\\sigma_{G_\\mathrm{RP}}$' +
                     ' for $(V-I)={0}$'.format(vmini))
        plt.xlim((6, 20))
        #plt.ylim(yminmax)
        plt.legend(loc=0)
        plt.xlabel('$G$ [mag]')

    plt.xticks(np.arange(6, 20, 2))
    ax = plt.gca().yaxis
    #ax.set_major_formatter(matplotlib.ticker.ScalarFormatter())
    #plt.ticklabel_format(axis='y',style='plain')
    plt.grid(which='both')
    plt.ylabel('Photometric error [mag]')
    if args['eom']:
        plt.title(
            'End-of-mission mean photometry: sky averaged errors for $(V-I)={0}$'
            .format(vmini),
            fontsize=14)
    else:
        plt.title(
            'Single-FoV-transit photometry: sky averaged errors for $(V-I)={0}$'
            .format(vmini),
            fontsize=14)

    basename = 'PhotometricErrors'
    if (args['pdfOutput']):
        plt.savefig(basename + '.pdf')
    elif (args['pngOutput']):
        plt.savefig(basename + '.png')
    else:
        plt.show()
Ejemplo n.º 19
0
def makePlot(args):
  """
  Make the plot with photometry performance predictions.

  :argument args: command line arguments
  """
  gmag=np.linspace(3.0,20.0,171)

  vmini = args['vmini']
  
  vmag=gmag-gminvFromVmini(vmini)
  
  if args['eom']:
      sigmaG = gMagnitudeErrorEoM(gmag)
      sigmaGBp = bpMagnitudeErrorEoM(gmag, vmini)
      sigmaGRp = rpMagnitudeErrorEoM(gmag, vmini)
      yminmax = (1.0-4,0.1)
  else:
      sigmaG = gMagnitudeError(gmag)
      sigmaGBp = bpMagnitudeError(gmag, vmini)
      sigmaGRp = rpMagnitudeError(gmag, vmini)
      yminmax = (1.0-4,1)

  fig=plt.figure(figsize=(10,6.5))
  
  if (args['vmagAbscissa']):
    plt.semilogy(vmag, sigmaG, 'k', label='$\\sigma_G$')
    plt.semilogy(vmag, sigmaGBp, 'b', label='$\\sigma_{G_\\mathrm{BP}}$'+' for $(V-I)={0}$'.format(vmini))
    plt.semilogy(vmag, sigmaGRp, 'r', label='$\\sigma_{G_\\mathrm{RP}}$'+' for $(V-I)={0}$'.format(vmini))
    plt.xlim((6,20))
    #plt.ylim(yminmax)
    plt.legend(loc=0)
    plt.xlabel('$V$ [mag]')
  else:
    ax=fig.add_subplot(111)
    plt.semilogy(gmag, sigmaG, 'k', label='$\\sigma_G$')
    plt.semilogy(gmag, sigmaGBp, 'b', label='$\\sigma_{G_\\mathrm{BP}}$'+' for $(V-I)={0}$'.format(vmini))
    plt.semilogy(gmag, sigmaGRp, 'r', label='$\\sigma_{G_\\mathrm{RP}}$'+' for $(V-I)={0}$'.format(vmini))
    plt.xlim((6,20))
    #plt.ylim(yminmax)
    plt.legend(loc=0)
    plt.xlabel('$G$ [mag]')
  
  plt.xticks(np.arange(6,20,2))
  ax = plt.gca().yaxis 
  #ax.set_major_formatter(matplotlib.ticker.ScalarFormatter())
  #plt.ticklabel_format(axis='y',style='plain')
  plt.grid(which='both')
  plt.ylabel('Photometric error [mag]')
  if args['eom']:
      plt.title('End-of-mission mean photometry: sky averaged errors for $(V-I)={0}$'.format(vmini), fontsize=14)
  else:
      plt.title('Single-FoV-transit photometry: sky averaged errors for $(V-I)={0}$'.format(vmini), fontsize=14)
  
  basename = 'PhotometricErrors'
  if (args['pdfOutput']):
    plt.savefig(basename+'.pdf')
  elif (args['pngOutput']):
    plt.savefig(basename+'.png')
  else:
    plt.show()
Ejemplo n.º 20
0
def makePlot(args):
    """
  Make the plot with parallax horizons. The plot shows V-band magnitude vs distance for a number of
  spectral types and over the range 5.7<G<20. In addition a set of crudely drawn contours show the points
  where 0.1, 1, and 10 per cent relative parallax accracy are reached.

  Parameters
  ----------
  
  args - Command line arguments.
  """
    distances = 10.0**np.linspace(1, 6, 10001)
    av = args['extinction']
    ai = 0.479 * av  #Cardelli et al R=3.1

    spts = ['B0I', 'B1V', 'G2V', 'K4V', 'M0V', 'M6V', 'K1III', 'M0III']
    pointOnePercD = []
    pointOnePercV = []
    onePercD = []
    onePercV = []
    tenPercD = []
    tenPercV = []
    vabsPointOnePerc = []
    vabsOnePerc = []
    vabsTenPerc = []

    fig = plt.figure(figsize=(11, 7.8))
    deltaHue = 240.0 / (len(spts) - 1)
    hues = (240.0 - np.arange(len(spts)) * deltaHue) / 360.0
    hsv = np.zeros((1, 1, 3))
    hsv[0, 0, 1] = 1.0
    hsv[0, 0, 2] = 0.9
    for hue, spt in zip(hues, spts):
        hsv[0, 0, 0] = hue
        vmags = vabsFromSpt(spt) + 5.0 * np.log10(distances) - 5.0 + av
        vmini = vminiFromSpt(spt) + av - ai
        #gmags = gabsFromSpt(spt)+5.0*np.log10(distances)-5.0
        gmags = vmags + gminvFromVmini(vmini)
        relParErr = parallaxErrorSkyAvg(gmags, vmini) * distances / 1.0e6
        observed = (gmags >= 5.7) & (gmags <= 20.0)
        relParErrObs = relParErr[observed]
        # Identify the points where the relative parallax accuracy is 0.1, 1, or 10 per cent.
        if (relParErrObs.min() < 0.001):
            index = len(relParErrObs[relParErrObs <= 0.001]) - 1
            pointOnePercD.append(distances[observed][index])
            pointOnePercV.append(vmags[observed][index])
            vabsPointOnePerc.append(vabsFromSpt(spt))
        if (relParErrObs.min() < 0.01):
            index = len(relParErrObs[relParErrObs <= 0.01]) - 1
            onePercD.append(distances[observed][index])
            onePercV.append(vmags[observed][index])
            vabsOnePerc.append(vabsFromSpt(spt))
        if (relParErrObs.min() < 0.1):
            index = len(relParErrObs[relParErrObs <= 0.1]) - 1
            tenPercD.append(distances[observed][index])
            tenPercV.append(vmags[observed][index])
            vabsTenPerc.append(vabsFromSpt(spt))
        plt.semilogx(distances[observed],
                     vmags[observed],
                     '-',
                     label=spt,
                     color=hsv_to_rgb(hsv)[0, 0, :])
        if (spt == 'B0I'):
            plt.text(distances[observed][-1] - 1.0e5,
                     vmags[observed][-1],
                     spt,
                     horizontalalignment='right',
                     verticalalignment='bottom',
                     fontsize=14)
        else:
            plt.text(distances[observed][-1],
                     vmags[observed][-1],
                     spt,
                     horizontalalignment='center',
                     verticalalignment='bottom',
                     fontsize=14)

    # Draw the "contours" of constant relative parallax accuracy.
    pointOnePercD = np.array(pointOnePercD)
    pointOnePercV = np.array(pointOnePercV)
    indices = np.argsort(vabsPointOnePerc)
    plt.semilogx(pointOnePercD[indices], pointOnePercV[indices], 'k--')
    plt.text(pointOnePercD[indices][-1] * 1.2,
             pointOnePercV[indices][-1] - 2.5,
             "$0.1$\\%",
             ha='right',
             size=16,
             bbox=dict(
                 boxstyle="round, pad=0.3",
                 ec=(0.0, 0.0, 0.0),
                 fc=(1.0, 1.0, 1.0),
             ))

    onePercD = np.array(onePercD)
    onePercV = np.array(onePercV)
    indices = np.argsort(vabsOnePerc)
    plt.semilogx(onePercD[indices], onePercV[indices], 'k--')
    plt.text(onePercD[indices][-1] * 1.2,
             onePercV[indices][-1] - 2.5,
             "$1$\\%",
             ha='right',
             size=16,
             bbox=dict(
                 boxstyle="round, pad=0.3",
                 ec=(0.0, 0.0, 0.0),
                 fc=(1.0, 1.0, 1.0),
             ))

    tenPercD = np.array(tenPercD)
    tenPercV = np.array(tenPercV)
    indices = np.argsort(vabsTenPerc)
    plt.semilogx(tenPercD[indices], tenPercV[indices], 'k--')
    plt.text(tenPercD[indices][-1] * 1.5,
             tenPercV[indices][-1] - 2.5,
             "$10$\\%",
             ha='right',
             size=16,
             bbox=dict(
                 boxstyle="round, pad=0.3",
                 ec=(0.0, 0.0, 0.0),
                 fc=(1.0, 1.0, 1.0),
             ))

    plt.title('Parallax relative accuracy horizons ($A_V={0}$)'.format(av))

    plt.xlabel('Distance [pc]')
    plt.ylabel('V')
    plt.grid()
    #leg=plt.legend(loc=4, fontsize=14, labelspacing=0.5)
    plt.ylim(5, 26)

    basename = 'ParallaxHorizons'
    if (args['pdfOutput']):
        plt.savefig(basename + '.pdf')
    elif (args['pngOutput']):
        plt.savefig(basename + '.png')
    else:
        plt.show()