Ejemplo n.º 1
0
    def subbasin_boundary_cells(self, subbsn_perc):
        """Subbasin boundary cells that are potential ridge sources."""
        dir_deltas = FlowModelConst.d8delta_ag.values()
        subbsn_elevs = dict()

        def add_elev_to_subbsn_elevs(sid, elev):
            if sid not in subbsn_elevs:
                subbsn_elevs[sid] = [elev]
            else:
                subbsn_elevs[sid].append(elev)

        for row in range(self.nrows):
            for col in range(self.ncols):
                if MathClass.floatequal(self.subbsn_data[row][col],
                                        self.nodata_subbsn):
                    continue
                for r, c in dir_deltas:
                    new_row = row + r
                    new_col = col + c
                    if 0 <= new_row < self.nrows and 0 <= new_col < self.ncols:
                        if MathClass.floatequal(
                                self.subbsn_data[new_row][new_col],
                                self.nodata_subbsn):
                            subbsnid = self.subbsn_data[row][col]
                            self.rdgpot[row][col] = subbsnid
                            add_elev_to_subbsn_elevs(subbsnid,
                                                     self.elev_data[row][col])
                        elif not MathClass.floatequal(
                                self.subbsn_data[row][col],
                                self.subbsn_data[new_row][new_col]):
                            subbsnid = self.subbsn_data[row][col]
                            subbsnid2 = self.subbsn_data[new_row][new_col]
                            self.rdgpot[row][col] = subbsnid
                            self.rdgpot[new_row][new_col] = subbsnid2
                            add_elev_to_subbsn_elevs(subbsnid,
                                                     self.elev_data[row][col])
                            add_elev_to_subbsn_elevs(
                                subbsnid2, self.elev_data[new_row][new_col])

        RasterUtilClass.write_gtiff_file(self.boundsrc, self.nrows, self.ncols,
                                         self.rdgpot, self.geotrans, self.srs,
                                         DEFAULT_NODATA, 6)
        subbsn_elevs_thresh = dict()
        for sid, elevs in list(subbsn_elevs.items()):
            tmpelev = numpy.array(elevs)
            tmpelev.sort()
            subbsn_elevs_thresh[sid] = tmpelev[int(len(tmpelev) * subbsn_perc)]
        for row in range(self.nrows):
            for col in range(self.ncols):
                if MathClass.floatequal(self.rdgpot[row][col], DEFAULT_NODATA):
                    continue
                if self.elev_data[row][col] < subbsn_elevs_thresh[
                        self.subbsn_data[row][col]]:
                    self.rdgpot[row][col] = DEFAULT_NODATA
        RasterUtilClass.write_gtiff_file(self.boundsrcfilter, self.nrows,
                                         self.ncols, self.rdgpot,
                                         self.geotrans, self.srs,
                                         DEFAULT_NODATA, 6)
Ejemplo n.º 2
0
 def filter_ridge_by_subbasin_boundary(self):
     for row in range(self.nrows):
         for col in range(self.ncols):
             if MathClass.floatequal(self.rdgsrc_data[row][col],
                                     DEFAULT_NODATA):
                 continue
             if MathClass.floatequal(self.rdgpot[row][col], DEFAULT_NODATA):
                 self.rdgsrc_data[row][col] = DEFAULT_NODATA
     RasterUtilClass.write_gtiff_file(self.rdgsrc, self.nrows, self.ncols,
                                      self.rdgsrc_data, self.geotrans,
                                      self.srs, DEFAULT_NODATA, 6)
Ejemplo n.º 3
0
 def check_orthogonal(angle):
     """Check the given Dinf angle based on D8 flow direction encoding code by ArcGIS"""
     flow_dir_taudem = -1
     flow_dir = -1
     if MathClass.floatequal(angle, FlowModelConst.e):
         flow_dir_taudem = FlowModelConst.e
         flow_dir = 1
     elif MathClass.floatequal(angle, FlowModelConst.ne):
         flow_dir_taudem = FlowModelConst.ne
         flow_dir = 128
     elif MathClass.floatequal(angle, FlowModelConst.n):
         flow_dir_taudem = FlowModelConst.n
         flow_dir = 64
     elif MathClass.floatequal(angle, FlowModelConst.nw):
         flow_dir_taudem = FlowModelConst.nw
         flow_dir = 32
     elif MathClass.floatequal(angle, FlowModelConst.w):
         flow_dir_taudem = FlowModelConst.w
         flow_dir = 16
     elif MathClass.floatequal(angle, FlowModelConst.sw):
         flow_dir_taudem = FlowModelConst.sw
         flow_dir = 8
     elif MathClass.floatequal(angle, FlowModelConst.s):
         flow_dir_taudem = FlowModelConst.s
         flow_dir = 4
     elif MathClass.floatequal(angle, FlowModelConst.se):
         flow_dir_taudem = FlowModelConst.se
         flow_dir = 2
     return flow_dir_taudem, flow_dir
Ejemplo n.º 4
0
 def check_orthogonal(angle):
     """Check the given Dinf angle based on D8 flow direction encoding code by ArcGIS"""
     flow_dir_taudem = -1
     flow_dir = -1
     if MathClass.floatequal(angle, FlowModelConst.e):
         flow_dir_taudem = FlowModelConst.e
         flow_dir = 1
     elif MathClass.floatequal(angle, FlowModelConst.ne):
         flow_dir_taudem = FlowModelConst.ne
         flow_dir = 128
     elif MathClass.floatequal(angle, FlowModelConst.n):
         flow_dir_taudem = FlowModelConst.n
         flow_dir = 64
     elif MathClass.floatequal(angle, FlowModelConst.nw):
         flow_dir_taudem = FlowModelConst.nw
         flow_dir = 32
     elif MathClass.floatequal(angle, FlowModelConst.w):
         flow_dir_taudem = FlowModelConst.w
         flow_dir = 16
     elif MathClass.floatequal(angle, FlowModelConst.sw):
         flow_dir_taudem = FlowModelConst.sw
         flow_dir = 8
     elif MathClass.floatequal(angle, FlowModelConst.s):
         flow_dir_taudem = FlowModelConst.s
         flow_dir = 4
     elif MathClass.floatequal(angle, FlowModelConst.se):
         flow_dir_taudem = FlowModelConst.se
         flow_dir = 2
     return flow_dir_taudem, flow_dir
Ejemplo n.º 5
0
    def raster_reclassify(srcfile, v_dict, dstfile, gdaltype=GDT_Float32):
        """Reclassify raster by given classifier dict.

        Args:
            srcfile: source raster file.
            v_dict: classifier dict.
            dstfile: destination file path.
            gdaltype (:obj:`pygeoc.raster.GDALDataType`): GDT_Float32 as default.
        """
        src_r = RasterUtilClass.read_raster(srcfile)
        src_data = src_r.data
        dst_data = numpy.copy(src_data)
        if gdaltype == GDT_Float32 and src_r.dataType != GDT_Float32:
            gdaltype = src_r.dataType
        no_data = src_r.noDataValue
        new_no_data = DEFAULT_NODATA
        if gdaltype in [GDT_Unknown, GDT_Byte, GDT_UInt16, GDT_UInt32]:
            new_no_data = 0
        if not MathClass.floatequal(new_no_data, src_r.noDataValue):
            if src_r.noDataValue not in v_dict:
                v_dict[src_r.noDataValue] = new_no_data
                no_data = new_no_data

        for k, v in v_dict.items():
            dst_data[src_data == k] = v
        RasterUtilClass.write_gtiff_file(dstfile, src_r.nRows, src_r.nCols, dst_data,
                                         src_r.geotrans, src_r.srs, no_data, gdaltype)
Ejemplo n.º 6
0
 def reclassify_landcover_parameters(landuse_file, landcover_file,
                                     landcover_initial_fields_file,
                                     landcover_lookup_file, attr_names,
                                     dst_dir):
     """relassify landcover_init_param parameters"""
     land_cover_codes = LanduseUtilClass.initialize_landcover_parameters(
         landuse_file, landcover_initial_fields_file, dst_dir)
     attr_map = LanduseUtilClass.read_crop_lookup_table(
         landcover_lookup_file)
     n = len(attr_names)
     replace_dicts = list()
     dst_crop_tifs = list()
     for i in range(n):
         cur_attr = attr_names[i]
         cur_dict = dict()
         dic = attr_map[cur_attr]
         for code in land_cover_codes:
             if MathClass.floatequal(code, DEFAULT_NODATA):
                 continue
             if code not in list(cur_dict.keys()):
                 cur_dict[code] = dic.get(code)
         replace_dicts.append(cur_dict)
         dst_crop_tifs.append(dst_dir + os.path.sep + cur_attr + '.tif')
     # print(replace_dicts)
     # print(len(replace_dicts))
     # print(dst_crop_tifs)
     # print(len(dst_crop_tifs))
     # Generate GTIFF
     for i, v in enumerate(dst_crop_tifs):
         # print(dst_crop_tifs[i])
         RasterUtilClass.raster_reclassify(landcover_file, replace_dicts[i],
                                           v)
Ejemplo n.º 7
0
 def reclassify_landcover_parameters(landuse_file, landcover_file,
                                     landcover_initial_fields_file,
                                     landcover_lookup_file, attr_names,
                                     dst_dir, landuse_shp):
     """relassify landcover_init_param parameters"""
     land_cover_codes = LanduseUtilClass.initialize_landcover_parameters(
         landuse_file, landcover_initial_fields_file, dst_dir, landuse_shp)
     attr_map = LanduseUtilClass.read_crop_lookup_table(
         landcover_lookup_file)
     n = len(attr_names)
     replace_dicts = []
     replace_dicts_attrn = dict()
     dst_crop_tifs = []
     for i in range(n):
         cur_attr = attr_names[i]
         cur_dict = dict()
         dic = attr_map[cur_attr]
         for code in land_cover_codes:
             if MathClass.floatequal(code, DEFAULT_NODATA):
                 continue
             if code not in list(cur_dict.keys()):
                 cur_dict[code] = dic.get(code)
         replace_dicts_attrn[cur_attr] = cur_dict
         replace_dicts.append(cur_dict)
         dst_crop_tifs.append(dst_dir + os.path.sep + cur_attr + '.tif')
     # print(replace_dicts)
     # print(len(replace_dicts))
     # print(dst_crop_tifs)
     # print(len(dst_crop_tifs))
     # Generate GTIFF
     landcover_rec_csv = r'D:\SEIMS\data\zts\data_prepare\spatial\test\landcover_rec_csv.csv'
     RasterUtilClass.landuse_cover_reclassify(landcover_file, landuse_shp,
                                              replace_dicts_attrn,
                                              landcover_rec_csv)
     print(landcover_rec_csv)
Ejemplo n.º 8
0
    def raster_to_gtiff(tif,
                        geotif,
                        change_nodata=False,
                        change_gdal_type=False):
        """Converting Raster format to GeoTIFF.

        Args:
            tif: source raster file path.
            geotif: output raster file path.
            change_nodata: change NoDataValue to -9999 or not.
            gdal_type (:obj:`pygeoc.raster.GDALDataType`): GDT_Float32 as default.
            change_gdal_type: If True, output the Float32 data type.
        """
        rst_file = RasterUtilClass.read_raster(tif)
        nodata = rst_file.noDataValue
        if change_nodata:
            if not MathClass.floatequal(rst_file.noDataValue, DEFAULT_NODATA):
                nodata = DEFAULT_NODATA
                nodata_array = numpy.ones(
                    (rst_file.nRows, rst_file.nCols)) * rst_file.noDataValue
                nodata_check = numpy.isclose(rst_file.data, nodata_array)
                rst_file.data[nodata_check] = DEFAULT_NODATA
                # rst_file.data[rst_file.data == rst_file.noDataValue] = DEFAULT_NODATA
        gdal_type = rst_file.dataType
        if change_gdal_type:
            gdal_type = GDT_Float32
        RasterUtilClass.write_gtiff_file(geotif, rst_file.nRows,
                                         rst_file.nCols, rst_file.data,
                                         rst_file.geotrans, rst_file.srs,
                                         nodata, gdal_type)
Ejemplo n.º 9
0
 def ridge_without_flowin_cell(self):
     """Find the original ridge sources that have no flow-in cells."""
     for row in range(self.nrows):
         for col in range(self.ncols):
             tempdir = self.flowdir_data[row][col]
             if MathClass.floatequal(tempdir, self.nodata_flow):
                 self.rdgsrc_data[row][col] = DEFAULT_NODATA
                 continue
             if self.flowmodel == 1:  # Dinf flow model
                 temp_coor = DinfUtil.downstream_index_dinf(
                     tempdir, row, col)
                 for temprow, tempcol in temp_coor:
                     if 0 <= temprow < self.nrows and 0 <= tempcol < self.ncols:
                         self.rdgsrc_data[temprow][tempcol] = DEFAULT_NODATA
                     else:
                         self.rdgsrc_data[row][col] = DEFAULT_NODATA
             else:  # D8 flow model
                 temprow, tempcol = D8Util.downstream_index(
                     tempdir, row, col)
                 if 0 <= temprow < self.nrows and 0 <= tempcol < self.ncols:
                     self.rdgsrc_data[temprow][tempcol] = DEFAULT_NODATA
                 else:
                     self.rdgsrc_data[row][col] = DEFAULT_NODATA
     RasterUtilClass.write_gtiff_file(self.rdgorg, self.nrows, self.ncols,
                                      self.rdgsrc_data, self.geotrans,
                                      self.srs, DEFAULT_NODATA, 6)
Ejemplo n.º 10
0
 def reclassify_landcover_parameters(landuse_file, landcover_file, landcover_initial_fields_file,
                                     landcover_lookup_file, attr_names, dst_dir):
     """relassify landcover_init_param parameters"""
     land_cover_codes = LanduseUtilClass.initialize_landcover_parameters(
             landuse_file, landcover_initial_fields_file, dst_dir)
     attr_map = LanduseUtilClass.read_crop_lookup_table(landcover_lookup_file)
     n = len(attr_names)
     replace_dicts = list()
     dst_crop_tifs = list()
     for i in range(n):
         cur_attr = attr_names[i]
         cur_dict = dict()
         dic = attr_map[cur_attr]
         for code in land_cover_codes:
             if MathClass.floatequal(code, DEFAULT_NODATA):
                 continue
             if code not in list(cur_dict.keys()):
                 cur_dict[code] = dic.get(code)
         replace_dicts.append(cur_dict)
         dst_crop_tifs.append(dst_dir + os.path.sep + cur_attr + '.tif')
     # print(replace_dicts)
     # print(len(replace_dicts))
     # print(dst_crop_tifs)
     # print(len(dst_crop_tifs))
     # Generate GTIFF
     for i, v in enumerate(dst_crop_tifs):
         # print(dst_crop_tifs[i])
         RasterUtilClass.raster_reclassify(landcover_file, replace_dicts[i], v)
Ejemplo n.º 11
0
 def reclassify_landcover_parameters(landuse_file, landcover_file, landcover_initial_fields_file,
                                     landcover_lookup_file, attr_names, dst_dir, landuse_shp):
     """relassify landcover_init_param parameters"""
     land_cover_codes = LanduseUtilClass.initialize_landcover_parameters(
             landuse_file, landcover_initial_fields_file, dst_dir, landuse_shp)
     attr_map = LanduseUtilClass.read_crop_lookup_table(landcover_lookup_file)
     n = len(attr_names)
     replace_dicts = []
     replace_dicts_attrn = dict()
     dst_crop_tifs = []
     for i in range(n):
         cur_attr = attr_names[i]
         cur_dict = dict()
         dic = attr_map[cur_attr]
         for code in land_cover_codes:
             if MathClass.floatequal(code, DEFAULT_NODATA):
                 continue
             if code not in list(cur_dict.keys()):
                 cur_dict[code] = dic.get(code)
         replace_dicts_attrn[cur_attr] = cur_dict
         replace_dicts.append(cur_dict)
         dst_crop_tifs.append(dst_dir + os.path.sep + cur_attr + '.tif')
     # print(replace_dicts)
     # print(len(replace_dicts))
     # print(dst_crop_tifs)
     # print(len(dst_crop_tifs))
     # Generate GTIFF
     landcover_rec_csv = r'D:\SEIMS\data\zts\data_prepare\spatial\test\landcover_rec_csv.csv'
     RasterUtilClass.landuse_cover_reclassify(landcover_file, landuse_shp, replace_dicts_attrn, landcover_rec_csv)
     print (landcover_rec_csv)
Ejemplo n.º 12
0
    def raster_reclassify(srcfile, v_dict, dstfile, gdaltype=GDT_Float32):
        """Reclassify raster by given classifier dict.

        Args:
            srcfile: source raster file.
            v_dict: classifier dict.
            dstfile: destination file path.
            gdaltype (:obj:`pygeoc.raster.GDALDataType`): GDT_Float32 as default.
        """
        src_r = RasterUtilClass.read_raster(srcfile)
        src_data = src_r.data
        dst_data = numpy.copy(src_data)
        if gdaltype == GDT_Float32 and src_r.dataType != GDT_Float32:
            gdaltype = src_r.dataType
        no_data = src_r.noDataValue
        new_no_data = DEFAULT_NODATA
        if gdaltype in [GDT_Unknown, GDT_Byte, GDT_UInt16, GDT_UInt32]:
            new_no_data = 0
        if not MathClass.floatequal(new_no_data, src_r.noDataValue):
            if src_r.noDataValue not in v_dict:
                v_dict[src_r.noDataValue] = new_no_data
                no_data = new_no_data

        for (k, v) in iteritems(v_dict):
            dst_data[src_data == k] = v
        RasterUtilClass.write_gtiff_file(dstfile, src_r.nRows, src_r.nCols, dst_data,
                                         src_r.geotrans, src_r.srs, no_data, gdaltype)
Ejemplo n.º 13
0
 def cal_cn2(lucc_id, hg):
     """Calculate CN2 value from landuse ID and Hydro Group number."""
     lucc_id = int(lucc_id)
     if lucc_id < 0 or MathClass.floatequal(lucc_id, nodata_value):
         return DEFAULT_NODATA
     else:
         hg = int(hg) - 1
         return cn2_map[lucc_id][hg]
Ejemplo n.º 14
0
 def cal_cn2(lucc_id, hg):
     """Calculate CN2 value from landuse ID and Hydro Group number."""
     lucc_id = int(lucc_id)
     if lucc_id < 0 or MathClass.floatequal(lucc_id, nodata_value):
         return DEFAULT_NODATA
     else:
         hg = int(hg) - 1
         return cn2_map[lucc_id][hg]
Ejemplo n.º 15
0
 def GetFuzzySlopePositionValues(i_row, i_col):
     seqvalues = [-9999] * len(fuzslppos_rs)
     for iseq, fuzdata in enumerate(fuzslppos_rs):
         curv = fuzdata.data[i_row][i_col]
         if MathClass.floatequal(curv, fuzdata.noDataValue):
             return None
         if curv < 0:
             return None
         seqvalues[iseq] = curv
     return seqvalues
Ejemplo n.º 16
0
def check_individual_diff(old_ind,  # type: Union[array.array, List[int], Tuple[int]]
                          new_ind  # type: Union[array.array, List[int], Tuple[int]]
                          ):
    # type: (...) -> bool
    """Check the gene values of two individuals."""
    diff = False
    for i in range(len(old_ind)):
        if not MathClass.floatequal(old_ind[i], new_ind[i]):
            diff = True
            break
    return diff
Ejemplo n.º 17
0
 def cal_cn2(lucc_id, hg):
     """Calculate CN2 value from landuse ID and Hydro Group number."""
     lucc_id = int(lucc_id)
     if lucc_id < 0 or MathClass.floatequal(lucc_id, nodata_value):
         return DEFAULT_NODATA
     else:
         hg = int(hg) - 1
         if lucc_id not in cn2_map:
             print("lucc %d not existed in cn2 lookup table!" % lucc_id)
             return DEFAULT_NODATA
         return cn2_map[lucc_id][hg]
Ejemplo n.º 18
0
 def cal_cn2(lucc_id, hg):
     """Calculate CN2 value from landuse ID and Hydro Group number."""
     lucc_id = int(lucc_id)
     if lucc_id < 0 or MathClass.floatequal(lucc_id, nodata_value):
         return DEFAULT_NODATA
     else:
         hg = int(hg) - 1
         if lucc_id not in cn2_map:
             print("lucc %d not existed in cn2 lookup table!" % lucc_id)
             return DEFAULT_NODATA
         return cn2_map[lucc_id][hg]
Ejemplo n.º 19
0
 def check_orthogonal(angle):
     """Check the given Dinf angle based on D8 flow direction encoding code by ArcGIS"""
     flow_dir = -1
     if MathClass.floatequal(angle, FlowModelConst.e):
         flow_dir = 1  # 1
     elif MathClass.floatequal(angle, FlowModelConst.ne):
         flow_dir = 2  # 128
     elif MathClass.floatequal(angle, FlowModelConst.n):
         flow_dir = 3  # 64
     elif MathClass.floatequal(angle, FlowModelConst.nw):
         flow_dir = 4  # 32
     elif MathClass.floatequal(angle, FlowModelConst.w):
         flow_dir = 5  # 16
     elif MathClass.floatequal(angle, FlowModelConst.sw):
         flow_dir = 6  # 8
     elif MathClass.floatequal(angle, FlowModelConst.s):
         flow_dir = 7  # 4
     elif MathClass.floatequal(angle, FlowModelConst.se):
         flow_dir = 8  # 2
     return flow_dir
Ejemplo n.º 20
0
    def compress_dinf(angle, nodata, minfrac=0.01):
        """Compress dinf flow direction to D8 direction with weight follows ArcGIS D8 codes.

        Args:
            angle: D-inf flow direction angle
            nodata: NoData value
            minfrac: Minimum flow fraction that accounted, percent, e.g., 0.01

        Returns:
            1. Updated Dinf values
            2. Compressed flow direction follows ArcGIS D8 codes rule
            3. Weight of the first direction by counter-clockwise
        """
        if MathClass.floatequal(angle, nodata):
            return DEFAULT_NODATA, DEFAULT_NODATA, DEFAULT_NODATA
        angle, d = DinfUtil.check_orthogonal(angle, minfrac=minfrac)
        if d != -1:
            return angle, d, 1.
        if angle < FlowModelConst.ne:
            a1 = angle
            d = 129  # 1+128
        elif angle < FlowModelConst.n:
            a1 = angle - FlowModelConst.ne
            d = 192  # 128+64
        elif angle < FlowModelConst.nw:
            a1 = angle - FlowModelConst.n
            d = 96  # 64+32
        elif angle < FlowModelConst.w:
            a1 = angle - FlowModelConst.nw
            d = 48  # 32+16
        elif angle < FlowModelConst.sw:
            a1 = angle - FlowModelConst.w
            d = 24  # 16+8
        elif angle < FlowModelConst.s:
            a1 = angle - FlowModelConst.sw
            d = 12  # 8+4
        elif angle < FlowModelConst.se:
            a1 = angle - FlowModelConst.s
            d = 6  # 4+2
        else:
            a1 = angle - FlowModelConst.se
            d = 3  # 2+1
        return angle, d, 1. - a1 / PI * 4.0
Ejemplo n.º 21
0
    def get_value_by_row_col(self, row, col):
        """Get raster value by (row, col).

        Args:
            row: row number.
            col: col number.

        Returns:
            raster value, None if the input are invalid.
        """
        if row < 0 or row >= self.nRows or col < 0 or col >= self.nCols:
            raise ValueError("The row or col must be >=0 and less than "
                             "nRows (%d) or nCols (%d)!" %
                             (self.nRows, self.nCols))
        else:
            value = self.data[int(round(row))][int(round(col))]
            if MathClass.floatequal(value, self.noDataValue):
                return None
            else:
                return value
Ejemplo n.º 22
0
    def compress_dinf(angle, nodata):
        """Compress dinf flow direction to D8 direction with weight follows ArcGIS D8 codes.
        Args:
            angle: D-inf flow direction angle
            nodata: NoData value

        Returns:
            1. Updated Dinf values
            2. Compressed flow direction follows ArcGIS D8 codes rule
            3. Weight of the first direction
        """
        if MathClass.floatequal(angle, nodata):
            return DEFAULT_NODATA, DEFAULT_NODATA, DEFAULT_NODATA
        taud, d = DinfUtil.check_orthogonal(angle)
        if d != -1:
            return taud, d, 1
        if angle < FlowModelConst.ne:
            a1 = angle
            d = 129  # 1+128
        elif angle < FlowModelConst.n:
            a1 = angle - FlowModelConst.ne
            d = 192  # 128+64
        elif angle < FlowModelConst.nw:
            a1 = angle - FlowModelConst.n
            d = 96  # 64+32
        elif angle < FlowModelConst.w:
            a1 = angle - FlowModelConst.nw
            d = 48  # 32+16
        elif angle < FlowModelConst.sw:
            a1 = angle - FlowModelConst.w
            d = 24  # 16+8
        elif angle < FlowModelConst.s:
            a1 = angle - FlowModelConst.sw
            d = 12  # 8+4
        elif angle < FlowModelConst.se:
            a1 = angle - FlowModelConst.s
            d = 6  # 4+2
        else:
            a1 = angle - FlowModelConst.se
            d = 3  # 2+1
        return angle, d, a1 / PI * 4.0
Ejemplo n.º 23
0
    def compress_dinf(angle, nodata):
        """Compress dinf flow direction to D8 direction with weight follows ArcGIS D8 codes.
        Args:
            angle: D-inf flow direction angle
            nodata: NoData value

        Returns:
            1. Updated Dinf values
            2. Compressed flow direction follows ArcGIS D8 codes rule
            3. Weight of the first direction
        """
        if MathClass.floatequal(angle, nodata):
            return DEFAULT_NODATA, DEFAULT_NODATA, DEFAULT_NODATA
        taud, d = DinfUtil.check_orthogonal(angle)
        if d != -1:
            return taud, d, 1
        if angle < FlowModelConst.ne:
            a1 = angle
            d = 129  # 1+128
        elif angle < FlowModelConst.n:
            a1 = angle - FlowModelConst.ne
            d = 192  # 128+64
        elif angle < FlowModelConst.nw:
            a1 = angle - FlowModelConst.n
            d = 96  # 64+32
        elif angle < FlowModelConst.w:
            a1 = angle - FlowModelConst.nw
            d = 48  # 32+16
        elif angle < FlowModelConst.sw:
            a1 = angle - FlowModelConst.w
            d = 24  # 16+8
        elif angle < FlowModelConst.s:
            a1 = angle - FlowModelConst.sw
            d = 12  # 8+4
        elif angle < FlowModelConst.se:
            a1 = angle - FlowModelConst.s
            d = 6  # 4+2
        else:
            a1 = angle - FlowModelConst.se
            d = 3  # 2+1
        return angle, d, a1 / PI * 4.0
Ejemplo n.º 24
0
    def compress_dinf(angle, nodata):
        """Compress dinf flow direction to D8 direction with weight
        Args:
            angle: D-inf flow direction angle
            nodata: NoData value

        Returns:
            Compressed flow direction and weight of the first direction
        """
        if MathClass.floatequal(angle, nodata):
            return DEFAULT_NODATA, DEFAULT_NODATA
        d = DinfUtil.check_orthogonal(angle)
        if d is not None:
            return d, 1
        if angle < FlowModelConst.ne:
            a1 = angle
            d = 129  # 1+128
        elif angle < FlowModelConst.n:
            a1 = angle - FlowModelConst.ne
            d = 192  # 128+64
        elif angle < FlowModelConst.nw:
            a1 = angle - FlowModelConst.n
            d = 96  # 64+32
        elif angle < FlowModelConst.w:
            a1 = angle - FlowModelConst.nw
            d = 48  # 32+16
        elif angle < FlowModelConst.sw:
            a1 = angle - FlowModelConst.w
            d = 24  # 16+8
        elif angle < FlowModelConst.s:
            a1 = angle - FlowModelConst.sw
            d = 12  # 8+4
        elif angle < FlowModelConst.se:
            a1 = angle - FlowModelConst.s
            d = 6  # 4+2
        else:
            a1 = angle - FlowModelConst.se
            d = 3  # 2+1
        return d, a1 / PI * 4.0
Ejemplo n.º 25
0
    def raster_to_gtiff(tif, geotif, change_nodata=False, change_gdal_type=False):
        """Converting Raster format to GeoTIFF.

        Args:
            tif: source raster file path.
            geotif: output raster file path.
            change_nodata: change NoDataValue to -9999 or not.
            gdal_type (:obj:`pygeoc.raster.GDALDataType`): GDT_Float32 as default.
            change_gdal_type: If True, output the Float32 data type.
        """
        rst_file = RasterUtilClass.read_raster(tif)
        nodata = rst_file.noDataValue
        if change_nodata:
            if not MathClass.floatequal(rst_file.noDataValue, DEFAULT_NODATA):
                nodata = DEFAULT_NODATA
                rst_file.data[rst_file.data == rst_file.noDataValue] = DEFAULT_NODATA
        gdal_type = rst_file.dataType
        if change_gdal_type:
            gdal_type = GDT_Float32
        RasterUtilClass.write_gtiff_file(geotif, rst_file.nRows, rst_file.nCols, rst_file.data,
                                         rst_file.geotrans, rst_file.srs, nodata,
                                         gdal_type)
Ejemplo n.º 26
0
def DelinateSlopePositionByThreshold(
        modelcfg,  # type: ParseSEIMSConfig
        thresholds,  # type: Dict[int, List]
        fuzzyslppos_fnames,  # type: List[Tuple[int, AnyStr, AnyStr]]
        outfname,  # type: AnyStr
        subbsn_id=0  # type: int
):
    # type: (...) -> Dict
    """

    Args:
        model_cfg: Configuration of SEIMS-based model
        thresholds: {HillslopeID: {rdgID, bksID, vlyID, T_bks2rdg, T_bks2vly}, ...}
        fuzzyslppos_fnames: [(1, 'summit', 'rdgInf'), ...]
        outfname: output GridFS name
        subbsn_id: By default use the whole watershed data
    Returns:
        hillslp_data(dict): {}
    """
    # 1. Read raster data from MongoDB
    hillslpr = ReadRasterFromMongoDB(modelcfg.host, modelcfg.port,
                                     modelcfg.db_name,
                                     DBTableNames.gridfs_spatial,
                                     '%d_HILLSLOPE_MERGED' % subbsn_id)
    landuser = ReadRasterFromMongoDB(modelcfg.host, modelcfg.port,
                                     modelcfg.db_name,
                                     DBTableNames.gridfs_spatial,
                                     '%d_LANDUSE' % subbsn_id)
    fuzslppos_rs = list()
    for tag, tagname, gfsname in fuzzyslppos_fnames:
        fuzslppos_rs.append(
            ReadRasterFromMongoDB(modelcfg.host, modelcfg.port,
                                  modelcfg.db_name,
                                  DBTableNames.gridfs_spatial,
                                  '%d_%s' % (subbsn_id, gfsname.upper())))

    # Output for test
    # out_dir = r'D:\data_m\youwuzhen\seims_models_phd\data_prepare\spatial\spatial_units\tmp'
    # out_hillslp = out_dir + os.sep + 'hillslope.tif'
    # RasterUtilClass.write_gtiff_file(out_hillslp, hillslpr.nRows, hillslpr.nCols,
    #                                  hillslpr.data, hillslpr.geotrans, hillslpr.srs,
    #                                  hillslpr.noDataValue)
    # out_landuse = out_dir + os.sep + 'landuse.tif'
    # RasterUtilClass.write_gtiff_file(out_landuse, landuser.nRows, landuser.nCols,
    #                                  landuser.data, landuser.geotrans, landuser.srs,
    #                                  landuser.noDataValue)
    # for i, (tag, tagname, gfsname) in enumerate(fuzzyslppos_fnames):
    #     curname = out_dir + os.sep + '%s.tif' % gfsname
    #     RasterUtilClass.write_gtiff_file(curname, fuzslppos_rs[i].nRows, fuzslppos_rs[i].nCols,
    #                                      fuzslppos_rs[i].data, fuzslppos_rs[i].geotrans,
    #                                      fuzslppos_rs[i].srs,
    #                                      fuzslppos_rs[i].noDataValue)

    # 2. Initialize output
    outgfsname = '%d_%s' % (subbsn_id, outfname.upper())
    outdict = dict(
    )  # type: Dict[AnyStr, Dict[int, Dict[AnyStr, Union[float, Dict[int, float]]]]]
    slppos_cls = numpy.ones(
        (hillslpr.nRows, hillslpr.nCols)) * hillslpr.noDataValue
    valid_cells = 0

    # Get the fuzzy slope position values from up to bottom
    def GetFuzzySlopePositionValues(i_row, i_col):
        seqvalues = [-9999] * len(fuzslppos_rs)
        for iseq, fuzdata in enumerate(fuzslppos_rs):
            curv = fuzdata.data[i_row][i_col]
            if MathClass.floatequal(curv, fuzdata.noDataValue):
                return None
            if curv < 0:
                return None
            seqvalues[iseq] = curv
        return seqvalues

    # ACTUAL ALGORITHM
    for row in range(hillslpr.nRows):
        for col in range(hillslpr.nCols):
            # Exclude invalid situation
            hillslp_id = hillslpr.data[row][col]
            if MathClass.floatequal(hillslp_id, hillslpr.noDataValue):
                continue
            if hillslp_id not in thresholds:
                continue
            landuse_id = landuser.data[row][col]
            if MathClass.floatequal(landuse_id, landuser.noDataValue):
                continue
            fuzzyvalues = GetFuzzySlopePositionValues(row, col)
            if fuzzyvalues is None:
                continue

            # THIS PART SHOULD BE REVIEWED CAREFULLY LATER! --START
            # Step 1. Get the index of slope position with maximum similarity
            max_fuz = max(fuzzyvalues)
            max_idx = fuzzyvalues.index(max_fuz)
            tmpfuzzyvalues = fuzzyvalues[:]
            tmpfuzzyvalues.remove(max_fuz)
            sec_fuz = max(tmpfuzzyvalues)
            sec_idx = fuzzyvalues.index(sec_fuz)

            sel_idx = max_idx  # Select the maximum by default

            cur_threshs = thresholds[hillslp_id][1 - len(fuzzyvalues):]

            if max_idx == len(fuzzyvalues) - 1:  # the bottom position
                if sec_idx == len(
                        fuzzyvalues
                ) - 2 and 0 < max_fuz - sec_fuz < cur_threshs[-1]:
                    sel_idx = sec_idx  # change valley to backslope
            elif max_idx == 0:  # the upper position
                if sec_idx == 1 and 0 < max_fuz - sec_fuz < cur_threshs[0]:
                    sel_idx = sec_idx  # change ridge to backslope
            else:  # the middle positions
                # Two thresholds could be applied,
                #     i.e., cur_threshs[max_idx-1] and cur_threshs[max_idx]
                if sec_idx == max_idx - 1 and 0. > sec_fuz - max_fuz > cur_threshs[
                        max_idx - 1]:
                    sel_idx = sec_idx
                elif sec_idx == max_idx + 1 and 0. > sec_fuz - max_fuz > cur_threshs[
                        max_idx]:
                    sel_idx = sec_idx

            # Exception:
            if sec_fuz < 0.1 and sel_idx == sec_idx:
                sel_idx = max_idx

            # if sel_idx != max_idx:  # boundary has been adapted
            #     print('fuzzy values: %s, thresholds: %s, '
            #           'sel_idx: %d' % (fuzzyvalues.__str__(), cur_threshs.__str__(), sel_idx))

            slppos_id = thresholds[hillslp_id][sel_idx]
            # THIS PART SHOULD BE REVIEWED CAREFULLY LATER! --END

            slppos_cls[row][col] = slppos_id
            sel_tagname = fuzzyslppos_fnames[sel_idx][1]
            if sel_tagname not in outdict:
                outdict[sel_tagname] = dict()
            if slppos_id not in outdict[sel_tagname]:
                outdict[sel_tagname][slppos_id] = {
                    'area': 0,
                    'landuse': dict()
                }
            outdict[sel_tagname][slppos_id]['area'] += 1
            if landuse_id not in outdict[sel_tagname][slppos_id]['landuse']:
                outdict[sel_tagname][slppos_id]['landuse'][landuse_id] = 0.
            outdict[sel_tagname][slppos_id]['landuse'][landuse_id] += 1.

            valid_cells += 1
    # Change cell counts to area
    area_km2 = hillslpr.dx * hillslpr.dx * 1.e-6
    for tagname, slpposdict in viewitems(outdict):
        for sid, datadict in viewitems(slpposdict):
            outdict[tagname][sid]['area'] *= area_km2
            for luid in outdict[tagname][sid]['landuse']:
                outdict[tagname][sid]['landuse'][luid] *= area_km2

    # 3. Write the classified slope positions data back to mongodb
    metadata = dict()
    metadata[RasterMetadata.subbasin] = subbsn_id
    metadata['ID'] = outgfsname
    metadata['TYPE'] = outfname.upper()
    metadata[RasterMetadata.cellsize] = hillslpr.dx
    metadata[RasterMetadata.nodata] = hillslpr.noDataValue
    metadata[RasterMetadata.ncols] = hillslpr.nCols
    metadata[RasterMetadata.nrows] = hillslpr.nRows
    metadata[RasterMetadata.xll] = hillslpr.xMin + 0.5 * hillslpr.dx
    metadata[RasterMetadata.yll] = hillslpr.yMin + 0.5 * hillslpr.dx
    metadata['LAYERS'] = 1.
    metadata[RasterMetadata.cellnum] = valid_cells
    metadata[RasterMetadata.srs] = hillslpr.srs

    client = ConnectMongoDB(modelcfg.host, modelcfg.port)
    conn = client.get_conn()
    maindb = conn[modelcfg.db_name]
    spatial_gfs = GridFS(maindb, DBTableNames.gridfs_spatial)
    # delete if the tablename gridfs file existed
    if spatial_gfs.exists(filename=outgfsname):
        x = spatial_gfs.get_version(filename=outgfsname)
        spatial_gfs.delete(x._id)
    # create and write new GridFS file
    new_gridfs = spatial_gfs.new_file(filename=outgfsname, metadata=metadata)
    new_gridfs_array = slppos_cls.reshape(
        (1, hillslpr.nCols * hillslpr.nRows)).tolist()[0]

    fmt = '%df' % hillslpr.nCols * hillslpr.nRows
    s = pack(fmt, *new_gridfs_array)
    new_gridfs.write(s)
    new_gridfs.close()

    # Read and output for test
    # slpposcls_r = ReadRasterFromMongoDB(modelcfg.host, modelcfg.port,
    #                                     modelcfg.db_name, DBTableNames.gridfs_spatial, outgfsname)
    # out_slpposcls = out_dir + os.sep + '%s.tif' % outgfsname
    # RasterUtilClass.write_gtiff_file(out_slpposcls, slpposcls_r.nRows, slpposcls_r.nCols,
    #                                  slpposcls_r.data, slpposcls_r.geotrans, slpposcls_r.srs,
    #                                  slpposcls_r.noDataValue)
    client.close()

    return outdict
Ejemplo n.º 27
0
def interpolate_observed_data_to_regular_interval(in_file, time_interval, start_time, end_time,
                                                  eliminate_zero=False,
                                                  time_sys_output='UTCTIME', day_divided_hour=0):
    """
    Interpolate not regular observed data to regular time interval data.
    Args:
        in_file: input data file, the basic format is as follows:
                 line 1: #<time_system> [<time_zone>], e.g., #LOCALTIME 8, #UTCTIME
                 line 2: DATETIME,field1,field2,...
                 line 3: YYYY-mm-dd HH:MM:SS,field1_value,field2_value,...
                 line 4: ...
                 ...
                 Field name can be PCP, FLOW, SED
                 the unit is mm/h, m3/s, g/L (i.e., kg/m3), respectively.
        time_interval: time interval, unit is minute, e.g., daily output is 1440
        start_time: start time, the format must be 'YYYY-mm-dd HH:MM:SS', and the time system
                    is based on time_sys.
        end_time: end time, see also start_time.
        eliminate_zero: Boolean flag. If true, the time interval without original records will
                        not be output.
        time_sys_output: time system of output time_system, the format must be
                  '<time_system> [<time_zone>]', e.g.,
                  'LOCALTIME'
                  'LOCALTIME 8'
                  'UTCTIME' (default)
        day_divided_hour: If the time_interval is equal to N*1440, this parameter should be
                          carefully specified. The value must range from 0 to 23. e.g.,
                          day_divided_hour ==> day ranges (all expressed as 2013-02-03)
                          0  ==> 2013-02-03 00:00:00 to 2013-02-03 23:59:59 (default)
                          8  ==> 2013-02-03 08:00:00 to 2013-02-04 07:59:59
                          20 ==> 2013-02-03 20:00:00 to 2013-02-04 19:59:59
    Returns:
        The output data files are located in the same directory with the input file.
        The nomenclature is: <field name>_<time system>_<time interval>_<nonzero>, e.g.,
        pcp_utctime_1440_nonzero.txt, flow_localtime_60.txt
    """
    FileClass.check_file_exists(in_file)
    time_sys_input, time_zone_input = HydroClimateUtilClass.get_time_system_from_data_file(in_file)
    data_items = read_data_items_from_txt(in_file)
    flds = data_items[0][:]
    data_items.remove(flds)
    if not 0 <= day_divided_hour <= 23:
        raise ValueError('Day divided hour must range from 0 to 23!')
    try:
        date_idx = flds.index('DATETIME')
        flds.remove('DATETIME')
    except ValueError:
        raise ValueError('DATETIME must be one of the fields!')
    # available field
    available_flds = ['FLOW', 'SED', 'PCP']

    def check_avaiable_field(cur_fld):
        """Check if the given field name is supported."""
        support_flag = False
        for fff in available_flds:
            if fff.lower() in cur_fld.lower():
                support_flag = True
                break
        return support_flag

    ord_data = OrderedDict()
    time_zone_output = time.timezone / -3600
    if time_sys_output.lower().find('local') >= 0:
        tmpstrs = StringClass.split_string(time_sys_output, [' '])
        if len(tmpstrs) == 2 and MathClass.isnumerical(tmpstrs[1]):
            time_zone_output = int(tmpstrs[1])
        time_sys_output = 'LOCALTIME'
    else:
        time_sys_output = 'UTCTIME'
        time_zone_output = 0
    for item in data_items:
        org_datetime = StringClass.get_datetime(item[date_idx])
        if time_sys_input == 'LOCALTIME':
            org_datetime -= timedelta(hours=time_zone_input)
        # now, org_datetime is UTC time.
        if time_sys_output == 'LOCALTIME':
            org_datetime += timedelta(hours=time_zone_output)
        # now, org_datetime is consistent with the output time system
        ord_data[org_datetime] = list()
        for i, v in enumerate(item):
            if i == date_idx:
                continue
            if MathClass.isnumerical(v):
                ord_data[org_datetime].append(float(v))
            else:
                ord_data[org_datetime].append(v)
    # print(ord_data)
    itp_data = OrderedDict()
    out_time_delta = timedelta(minutes=time_interval)
    sdatetime = StringClass.get_datetime(start_time)
    edatetime = StringClass.get_datetime(end_time)
    item_dtime = sdatetime
    if time_interval % 1440 == 0:
        item_dtime = sdatetime.replace(hour=0, minute=0, second=0) + \
                     timedelta(minutes=day_divided_hour * 60)
    while item_dtime <= edatetime:
        # print(item_dtime)
        # if item_dtime.month == 12 and item_dtime.day == 31:
        #     print("debug")
        sdt = item_dtime  # start datetime of records
        edt = item_dtime + out_time_delta  # end datetime of records
        # get original data items
        org_items = list()
        pre_dt = list(ord_data.keys())[0]
        pre_added = False
        for i, v in list(ord_data.items()):
            if sdt <= i < edt:
                if not pre_added and pre_dt < sdt < i and sdt - pre_dt < out_time_delta:
                    # only add one item that less than sdt.
                    org_items.append([pre_dt] + ord_data.get(pre_dt))
                    pre_added = True
                org_items.append([i] + v)
            if i > edt:
                break
            pre_dt = i
        if len(org_items) > 0:
            org_items.append([edt])  # Just add end time for compute convenient
            if org_items[0][0] < sdt:
                org_items[0][0] = sdt  # set the begin datetime of current time interval
        # if eliminate time interval without original records
        # initial interpolated list
        itp_data[item_dtime] = [0.] * len(flds)
        if len(org_items) == 0:
            if eliminate_zero:
                itp_data.popitem()
            item_dtime += out_time_delta
            continue
        # core interpolation code
        flow_idx = -1
        for v_idx, v_name in enumerate(flds):
            if not check_avaiable_field(v_name):
                continue
            if 'SED' in v_name.upper():  # FLOW must be existed
                for v_idx2, v_name2 in enumerate(flds):
                    if 'FLOW' in v_name2.upper():
                        flow_idx = v_idx2
                        break
                if flow_idx < 0:
                    raise RuntimeError('To interpolate SED, FLOW must be provided!')
        for v_idx, v_name in enumerate(flds):
            if not check_avaiable_field(v_name):
                continue
            itp_value = 0.
            itp_auxiliary_value = 0.
            for org_item_idx, org_item_dtv in enumerate(org_items):
                if org_item_idx == 0:
                    continue
                org_item_dt = org_item_dtv[0]
                pre_item_dtv = org_items[org_item_idx - 1]
                pre_item_dt = pre_item_dtv[0]
                tmp_delta_dt = org_item_dt - pre_item_dt
                tmp_delta_secs = tmp_delta_dt.days * 86400 + tmp_delta_dt.seconds
                if 'SED' in v_name.upper():
                    itp_value += pre_item_dtv[v_idx + 1] * pre_item_dtv[flow_idx + 1] * \
                                 tmp_delta_secs
                    itp_auxiliary_value += pre_item_dtv[flow_idx + 1] * tmp_delta_secs
                else:
                    itp_value += pre_item_dtv[v_idx + 1] * tmp_delta_secs
            if 'SED' in v_name.upper():
                if MathClass.floatequal(itp_auxiliary_value, 0.):
                    itp_value = 0.
                    print('WARNING: Flow is 0 for %s, please check!' %
                          item_dtime.strftime('%Y-%m-%d %H:%M:%S'))
                itp_value /= itp_auxiliary_value
            elif 'FLOW' in v_name.upper():
                itp_value /= (out_time_delta.days * 86400 + out_time_delta.seconds)
            elif 'PCP' in v_name.upper():  # the input is mm/h, and output is mm
                itp_value /= 3600.
            itp_data[item_dtime][v_idx] = round(itp_value, 4)
        item_dtime += out_time_delta

    # for i, v in itp_data.items():
    #     print(i, v)
    # output to files
    work_path = os.path.dirname(in_file)
    header_str = '#' + time_sys_output
    if time_sys_output == 'LOCALTIME':
        header_str = header_str + ' ' + str(time_zone_output)
    for idx, fld in enumerate(flds):
        if not check_avaiable_field(fld):
            continue
        file_name = fld + '_' + time_sys_output + '_' + str(time_interval)
        if eliminate_zero:
            file_name += '_nonzero'
        file_name += '.txt'
        out_file = work_path + os.path.sep + file_name
        with open(out_file, 'w') as f:
            f.write(header_str + '\n')
            f.write('DATETIME,' + fld + '\n')
            for i, v in list(itp_data.items()):
                cur_line = i.strftime('%Y-%m-%d %H:%M:%S') + ',' + str(v[idx]) + '\n'
                f.write(cur_line)
Ejemplo n.º 28
0
def interpolate_observed_data_to_regular_interval(in_file, time_interval, start_time, end_time,
                                                  eliminate_zero=False,
                                                  time_sys_output='UTCTIME', day_divided_hour=0):
    """
    Interpolate not regular observed data to regular time interval data.

    Todo: Not tested yet!

    Args:
        in_file: input data file, the basic format is as follows:
                 line 1: #<time_system> [<time_zone>], e.g., #LOCALTIME 8, #UTCTIME
                 line 2: DATETIME,field1,field2,...
                 line 3: YYYY-mm-dd HH:MM:SS,field1_value,field2_value,...
                 line 4: ...
                 ...
                 Field name can be PCP, FLOW, SED
                 the unit is mm/h, m3/s, g/L (i.e., kg/m3), respectively.
        time_interval: time interval, unit is minute, e.g., daily output is 1440
        start_time: start time, the format must be 'YYYY-mm-dd HH:MM:SS', and the time system
                    is based on time_sys.
        end_time: end time, see also start_time.
        eliminate_zero: Boolean flag. If true, the time interval without original records will
                        not be output.
        time_sys_output: time system of output time_system, the format must be
                  '<time_system> [<time_zone>]', e.g.,
                  'LOCALTIME'
                  'LOCALTIME 8'
                  'UTCTIME' (default)
        day_divided_hour: If the time_interval is equal to N*1440, this parameter should be
                          carefully specified. The value must range from 0 to 23. e.g.,
                          day_divided_hour ==> day ranges (all expressed as 2013-02-03)
                          0  ==> 2013-02-03 00:00:00 to 2013-02-03 23:59:59 (default)
                          8  ==> 2013-02-03 08:00:00 to 2013-02-04 07:59:59
                          20 ==> 2013-02-03 20:00:00 to 2013-02-04 19:59:59
    Returns:
        The output data files are located in the same directory with the input file.
        The nomenclature is: <field name>_<time system>_<time interval>_<nonzero>, e.g.,
        pcp_utctime_1440_nonzero.csv, flow_localtime_60.csv.
        Note that `.txt` format is also supported.
    """
    FileClass.check_file_exists(in_file)
    time_sys_input, time_zone_input = HydroClimateUtilClass.get_time_system_from_data_file(in_file)
    data_items = read_data_items_from_txt(in_file)
    flds = data_items[0][:]
    data_items.remove(flds)
    if not 0 <= day_divided_hour <= 23:
        raise ValueError('Day divided hour must range from 0 to 23!')
    try:
        date_idx = flds.index('DATETIME')
        flds.remove('DATETIME')
    except ValueError:
        raise ValueError('DATETIME must be one of the fields!')
    # available field
    available_flds = ['FLOW', 'SED', 'PCP']

    def check_avaiable_field(cur_fld):
        """Check if the given field name is supported."""
        support_flag = False
        for fff in available_flds:
            if fff.lower() in cur_fld.lower():
                support_flag = True
                break
        return support_flag

    ord_data = OrderedDict()
    time_zone_output = time.timezone // 3600
    if time_sys_output.lower().find('local') >= 0:
        tmpstrs = StringClass.split_string(time_sys_output, [' '])
        if len(tmpstrs) == 2 and MathClass.isnumerical(tmpstrs[1]):
            time_zone_output = -1 * int(tmpstrs[1])
        time_sys_output = 'LOCALTIME'
    else:
        time_sys_output = 'UTCTIME'
        time_zone_output = 0
    for item in data_items:
        org_datetime = StringClass.get_datetime(item[date_idx])
        if time_sys_input == 'LOCALTIME':
            org_datetime += timedelta(hours=time_zone_input)  # now, org_datetime is UTC time.
        if time_sys_output == 'LOCALTIME':
            org_datetime -= timedelta(hours=time_zone_output)
        # now, org_datetime is consistent with the output time system
        ord_data[org_datetime] = list()
        for i, v in enumerate(item):
            if i == date_idx:
                continue
            if MathClass.isnumerical(v):
                ord_data[org_datetime].append(float(v))
            else:
                ord_data[org_datetime].append(v)
    # print(ord_data)
    itp_data = OrderedDict()
    out_time_delta = timedelta(minutes=time_interval)
    sdatetime = StringClass.get_datetime(start_time)
    edatetime = StringClass.get_datetime(end_time)
    item_dtime = sdatetime
    if time_interval % 1440 == 0:
        item_dtime = sdatetime.replace(hour=0, minute=0, second=0) + \
                     timedelta(minutes=day_divided_hour * 60)
    while item_dtime <= edatetime:
        # print(item_dtime)
        # if item_dtime.month == 12 and item_dtime.day == 31:
        #     print("debug")
        sdt = item_dtime  # start datetime of records
        edt = item_dtime + out_time_delta  # end datetime of records
        # get original data items
        org_items = list()
        pre_dt = list(ord_data.keys())[0]
        pre_added = False
        for i, v in list(ord_data.items()):
            if sdt <= i < edt:
                if not pre_added and pre_dt < sdt < i and sdt - pre_dt < out_time_delta:
                    # only add one item that less than sdt.
                    org_items.append([pre_dt] + ord_data.get(pre_dt))
                    pre_added = True
                org_items.append([i] + v)
            if i > edt:
                break
            pre_dt = i
        if len(org_items) > 0:
            org_items.append([edt])  # Just add end time for compute convenient
            if org_items[0][0] < sdt:
                org_items[0][0] = sdt  # set the begin datetime of current time interval
        # if eliminate time interval without original records
        # initial interpolated list
        itp_data[item_dtime] = [0.] * len(flds)
        if len(org_items) == 0:
            if eliminate_zero:
                itp_data.popitem()
            item_dtime += out_time_delta
            continue
        # core interpolation code
        flow_idx = -1
        for v_idx, v_name in enumerate(flds):
            if not check_avaiable_field(v_name):
                continue
            if 'SED' in v_name.upper():  # FLOW must be existed
                for v_idx2, v_name2 in enumerate(flds):
                    if 'FLOW' in v_name2.upper():
                        flow_idx = v_idx2
                        break
                if flow_idx < 0:
                    raise RuntimeError('To interpolate SED, FLOW must be provided!')
        for v_idx, v_name in enumerate(flds):
            if not check_avaiable_field(v_name):
                continue
            itp_value = 0.
            itp_auxiliary_value = 0.
            for org_item_idx, org_item_dtv in enumerate(org_items):
                if org_item_idx == 0:
                    continue
                org_item_dt = org_item_dtv[0]
                pre_item_dtv = org_items[org_item_idx - 1]
                pre_item_dt = pre_item_dtv[0]
                tmp_delta_dt = org_item_dt - pre_item_dt
                tmp_delta_secs = tmp_delta_dt.days * 86400 + tmp_delta_dt.seconds
                if 'SED' in v_name.upper():
                    itp_value += pre_item_dtv[v_idx + 1] * pre_item_dtv[flow_idx + 1] * \
                                 tmp_delta_secs
                    itp_auxiliary_value += pre_item_dtv[flow_idx + 1] * tmp_delta_secs
                else:
                    itp_value += pre_item_dtv[v_idx + 1] * tmp_delta_secs
            if 'SED' in v_name.upper():
                if MathClass.floatequal(itp_auxiliary_value, 0.):
                    itp_value = 0.
                    print('WARNING: Flow is 0 for %s, please check!' %
                          item_dtime.strftime('%Y-%m-%d %H:%M:%S'))
                itp_value /= itp_auxiliary_value
            elif 'FLOW' in v_name.upper():
                itp_value /= (out_time_delta.days * 86400 + out_time_delta.seconds)
            elif 'PCP' in v_name.upper():  # the input is mm/h, and output is mm
                itp_value /= 3600.
            itp_data[item_dtime][v_idx] = round(itp_value, 4)
        item_dtime += out_time_delta

    # for i, v in itp_data.items():
    #     print(i, v)
    # output to files
    work_path = os.path.dirname(in_file)
    header_str = '#' + time_sys_output
    if time_sys_output == 'LOCALTIME':
        header_str = header_str + ' ' + str(time_zone_output)
    for idx, fld in enumerate(flds):
        if not check_avaiable_field(fld):
            continue
        file_name = fld + '_' + time_sys_output + '_' + str(time_interval)
        if eliminate_zero:
            file_name += '_nonzero'
        file_name += '.csv'
        out_file = work_path + os.path.sep + file_name
        with open(out_file, 'w', encoding='utf-8') as f:
            f.write(header_str + '\n')
            f.write('DATETIME,' + fld + '\n')
            for i, v in list(itp_data.items()):
                cur_line = i.strftime('%Y-%m-%d %H:%M:%S') + ',' + str(v[idx]) + '\n'
                f.write(cur_line)