Ejemplo n.º 1
0
def onclick(event):
    if event.inaxes != None:
        xpx = event.xdata
        ypx = event.ydata
        try:
            out = (xpx, ypx, gbma[ypx, xpx])
            if ggt is not None:
                #Note matplotlib (0,0) is lower left
                #gdal (0,0) is upper left
                mx, my = geolib.pixelToMap(xpx, ypx, ggt)
                out = (xpx, ypx), (mx, my, gbma[ypx, xpx])
            print out
        except IndexError:
            pass
Ejemplo n.º 2
0
def plot_point(ex, ey):
    if ex > m.shape[2]-1 or ey > m.shape[1]-1:
        print "Input coordinates are outside stack extent:"
        print ex, ey
        print m.shape
    else:
        v = sample_stack(ex, ey, geoid_offset=geoid_offset, pad=pad)
        v_idx = (~np.ma.getmaskarray(v)).nonzero()[0]
        v_error = error[v_idx].data
        v_source = source[v_idx].data
        samp_list = split_sample(v)
        #v = m[:,ey,ex]
        #if not samp_list:
        if v.count() > 0:
            c = next(colors)
            v_mean = v.mean()
            v_valid = v.compressed()
            v_rel_valid = v_valid - v_mean
            d_valid = np.ma.array(d, mask=np.ma.getmaskarray(v)).compressed()
            #Plot trendline
            if plot_trend:
                vm, r, slope = linregress(v)
                vm_rel = vm - v_mean 
                plt.figure(1)
                ax_rel.plot_date(d, vm_rel, label='%0.1f m/yr' % slope, marker=None, markersize=ms, color=c, linestyle='--', linewidth=0.6)
                #v_rel_abs_lim = int(max(abs(v_rel.min()), abs(v_rel.max())) + 0.5)
                #if np.all(np.abs(ax_rel.get_ylim()) < vn_abs_lim):
                #    ax_rel.set_ylim(-v_rel_abs_lim, v_rel_abs_lim)
                if plot_resid:
                    plt.figure(3)
                    r_samp_list = split_sample(r)
                    for i in r_samp_list:
                        r_line, = ax_resid.plot_date(i[0], i[1], marker=i[4], alpha=i[5], markersize=ms, color=c, linestyle='None') 
                        if errorbars:
                           if np.any(i[2] != 0): 
                                ax_resid.errorbar(i[0], i[1], yerr=i[2], color=c, linestyle='None')
                    plt.draw()
            for i in samp_list:
                #Don't label, as we want legend to contain trend values
                plt.figure(1)
                v_rel_line, = ax_rel.plot_date(i[0], i[1]-v_mean, marker=i[4], alpha=i[5], markersize=ms, color=c, linestyle='None') 
                if errorbars:
                    if np.any(i[2] != 0): 
                        plt.figure(1)
                        ax_rel.errorbar(i[0], i[1]-v_mean, yerr=i[2], color=c, linestyle='None')
                plt.figure(2)
                v_line, = ax_abs.plot_date(i[0], i[1], marker=i[4], alpha=i[5], markersize=ms, color=c, linestyle='None')
                if errorbars:
                    if np.any(i[2] != 0): 
                        plt.figure(2)
                        ax_abs.errorbar(i[0], i[1], yerr=i[2], color=c, linestyle='None')
            plt.figure(2)
            #Now draw lines connecting points
            v_line, = ax_abs.plot_date(d_valid, v_valid, marker=None, color=c, linestyle='-', linewidth=0.6, alpha=0.5) 
            plt.draw()
            #Don't really need/want lines between points on this one - too busy
            plt.figure(1)
            v_rel_line, = ax_rel.plot_date(d_valid, v_rel_valid, marker=None, color=c, linestyle='-', linewidth=0.6, alpha=0.5) 
            if plot_trend:
                #Add legend containing trend values
                plt.legend(loc='upper right', prop={'size':10})
            plt.draw()
            #Plot doy
            #Need to add title to doy plots
            mx, my = geolib.pixelToMap(ex, ey, gt)
            title='%0.1f, %0.1f' % (mx, my)
            #doy_plot(s.date_list, v, ylabel, title=title)
            #create_legend_interactive(ax_abs)
            #Now add point to context maps
            plt.figure(0)
            #Could get fancy here and scale the marker as unfilled square scaled to size of padded sample
            ax_pt_list[0].extend(ax_list[0].plot(ex, ey, 'o', color=c))
            ax_pt_list[1].extend(ax_list[1].plot(ex, ey, 'o', color=c))
            ax_pt_list[2].extend(ax_list[2].plot(ex, ey, 'o', color=c))
            ax_pt_list[3].extend(ax_list[3].plot(ex, ey, 'o', color=c))
            plt.draw()
            if False:
                out_fn = 'stack_sample_%0.1f_%0.1f.csv' % (mx, my)
                #np.savetxt(out_fn, np.array([d_valid, v_valid, v_error, v_source]).T, fmt='%0.6f, %0.1f, %0.1f, %s', delimiter=',')
                np.savetxt(out_fn, np.array([d_valid, v_valid, v_error]).T, fmt='%0.6f, %0.1f, %0.1f', delimiter=',')
Ejemplo n.º 3
0
def sample_stack(ex, ey, geoid_offset=False, pad=3):
    if ex > m.shape[2]-1 or ey > m.shape[1]-1:
        print "Input coordinates are outside stack extent:"
        print ex, ey
        print m.shape
        v = None
    else:
        print "Sampling with pad: %i" % pad
        if pad == 0:
            v = m[:,ey,ex]
        else:
            window_x = np.around(np.clip([ex-pad, ex+pad+1], 0, m.shape[2]-1)).astype(int)
            window_y = np.around(np.clip([ey-pad, ey+pad+1], 0, m.shape[1]-1)).astype(int)
            print window_x
            print window_y
            v = m[:,window_y[0]:window_y[1],window_x[0]:window_x[1]].reshape(m.shape[0], np.ptp(window_x)*np.ptp(window_y))
            #v = v.mean(axis=1)
            v = np.ma.median(v, axis=1)
        if v.count() == 0:
            print "No valid values"
        else:
            mx, my = geolib.pixelToMap(ex, ey, gt)
            print ex, ey, mx, my
            print "Count: %i" % v.count()
            #Hack to get elevations relative to geoid
            #Note: this can be added multiple times if clicked quickly
            if geoid_offset:
                #geoid_offset = geolib.sps2geoid(mx, my, 0.0)[2]
                geoid_offset = geolib.nps2geoid(mx, my, 0.0)[2]
                print "Removing geoid offset: %0.1f" % geoid_offset
                v += geoid_offset
        #Should filter here
        #RS1 has some values that are many 1000s of m/yr below neighbors
        if filter_outliers:
            if True:
                med = malib.fast_median(v)
                mad = malib.mad(v)
                min_v = med - mad*4
                f_idx = (v < min_v).filled(False)
                if np.any(f_idx):
                    print med, mad
                    print "Outliers removed by absolute filter: (val < %0.1f)" % min_v
                    print timelib.o2dt(d[f_idx])
                    print v[f_idx]
                    v[f_idx] = np.ma.masked
            if True:
                v_idx = (~np.ma.getmaskarray(v)).nonzero()[0]
                #This tries to maintain fixed window in time
                f = filtlib.rolling_fltr(v, size=7)
                #This uses fixed number of neighbors
                f = filtlib.rolling_fltr(v[v_idx], size=7)
                #f_diff = np.abs(f - v)
                #Note: the issue is usually that the velocity values are too low
                #f_diff = f - v
                f_diff = f - v[v_idx]
                diff_thresh = 2000
                #f_idx = (f_diff > diff_thresh).filled(False)
                #f_idx = (f_diff < diff_thresh).filled(False)
                f_idx = np.zeros_like(v.data).astype(bool)
                f_idx[v_idx] = (f_diff > diff_thresh)
                if np.any(f_idx):
                    print "Outliers removed by rolling median filter: (val < %0.1f)" % diff_thresh
                    print timelib.o2dt(d[f_idx])
                    print v[f_idx]
                    v[f_idx] = np.ma.masked
    return v