Ejemplo n.º 1
0
def test_composedecompose():
    t_values = [
        Vector3(),
        Vector3(3, 0, 0),
        Vector3(0, 4, 0),
        Vector3(0, 0, 5),
        Vector3(-6, 0, 0),
        Vector3(0, -7, 0),
        Vector3(0, 0, -8),
        Vector3(-2, 5, -9),
        Vector3(-2, -5, -9),
    ]

    s_values = [
        Vector3(1, 1, 1),
        Vector3(2, 2, 2),
        Vector3(1, -1, 1),
        Vector3(-1, 1, 1),
        Vector3(1, 1, -1),
        Vector3(2, -2, 1),
        Vector3(-1, 2, -2),
        Vector3(-1, -1, -1),
        Vector3(-2, -2, -2),
    ]

    r_values = [
        Quaternion(),
        Quaternion().set_from_euler(Euler(1, 1, 0)),
        Quaternion().set_from_euler(Euler(1, -1, 1)),
        Quaternion(0, 0.9238795292366128, 0, 0.38268342717215614),
    ]

    for ti in range(len(t_values)):
        for si in range(len(s_values)):
            for ri in range(len(r_values)):
                t = t_values[ti]
                s = s_values[si]
                r = r_values[ri]

                m = Matrix4().compose(t, r, s)
                t2 = Vector3()
                r2 = Quaternion()
                s2 = Vector3()

                m.decompose(t2, r2, s2)

                m2 = Matrix4().compose(t2, r2, s2)

                ##
                # debug code
                # matrixIsSame = matrix_equals( m, m2 )
                #             if ( ! matrixIsSame ) {
                #     console.log( t, s, r )
                #                     console.log( t2, s2, r2 )
                #                     console.log( m, m2 )
                #                 }
                ##

                assert matrix_equals(m, m2)
Ejemplo n.º 2
0
def test_angle_to():
    a = Quaternion()
    b = Quaternion().set_from_euler(Euler(0, pi, 0))
    c = Quaternion().set_from_euler(Euler(0, pi * 2, 0))

    assert a.angle_to(a) == 0
    assert a.angle_to(b) == pi
    assert a.angle_to(c) == 0
Ejemplo n.º 3
0
def test_set_from_euler_set_from_quaternion():
    angles = [Vector3(1, 0, 0), Vector3(0, 1, 0), Vector3(0, 0, 1)]

    # ensure euler conversion to/from Quaternion matches.
    for i in range(len(orders)):
        for j in range(len(angles)):
            eulers2 = Euler().set_from_quaternion(
                Quaternion().set_from_euler(
                    Euler(angles[j].x, angles[j].y, angles[j].z, orders[i])),
                orders[i],
            )
            new_angle = Vector3(eulers2.x, eulers2.y, eulers2.z)
            assert new_angle.distance_to(angles[j]) < 0.001
Ejemplo n.º 4
0
def test_set_from_vector3_to_vector3():
    a = Euler()

    a.set(0, 1, 0, Euler.RotationOrders.ZYX)
    assert a.equals(euler_azyx)
    assert not a.equals(euler_axyz)
    assert not a.equals(euler_zero)

    vec = Vector3(0, 1, 0)

    b = Euler().set_from_vector3(vec, Euler.RotationOrders.ZYX)
    assert a.equals(b)

    c = b.to_vector3()
    assert c.equals(vec)
Ejemplo n.º 5
0
def test_multiply_vector3():
    angles = [Euler(1, 0, 0), Euler(0, 1, 0), Euler(0, 0, 1)]

    # ensure euler conversion for Quaternion matches that of Matrix4
    for i in range(len(orders)):
        for j in range(len(angles)):
            q = Quaternion().set_from_euler(
                change_euler_order(angles[j], orders[i]))
            m = Matrix4().make_rotation_from_euler(
                change_euler_order(angles[j], orders[i]))

            v0 = Vector3(1, 0, 0)
            qv = v0.clone().apply_quaternion(q)
            mv = v0.clone().apply_matrix4(m)

            assert qv.distance_to(mv) < 0.001
Ejemplo n.º 6
0
def test_quaternion_set_from_euler_euler_from_quaternion():
    test_values = [euler_zero, euler_axyz, euler_azyx]
    for i in range(len(test_values)):
        v = test_values[i]
        q = Quaternion().set_from_euler(v)

        v2 = Euler().set_from_quaternion(q, v.order)
        q2 = Quaternion().set_from_euler(v2)
        assert quat_equals(q, q2)
Ejemplo n.º 7
0
def test_matrix4_set_from_euler_euler_from_rotation_matrix():
    test_values = [euler_zero, euler_axyz, euler_azyx]
    for i in range(len(test_values)):

        v = test_values[i]
        m = Matrix4().make_rotation_from_euler(v)

        v2 = Euler().set_from_rotation_matrix(m, v.order)
        m2 = Matrix4().make_rotation_from_euler(v2)
        assert matrix_equals(m, m2, 0.0001)
Ejemplo n.º 8
0
def test_apply_euler():
    a = Vector3(x, y, z)
    euler = Euler(90, -45, 0)
    expected = Vector3(-2.352970120501014, -4.7441750936226645,
                       0.9779234597246458)

    a.apply_euler(euler)
    assert abs(a.x - expected.x) <= eps, "Check x"
    assert abs(a.y - expected.y) <= eps, "Check y"
    assert abs(a.z - expected.z) <= eps, "Check z"
Ejemplo n.º 9
0
def test_update_matrix_world():
    root = WorldObject()
    root.position.set(-5, 8, 0)
    root.rotation.set_from_euler(Euler(pi / 4, 0, 0))
    root.update_matrix()

    child1 = WorldObject()
    child1.position.set(0, 0, 5)
    root.add(child1)

    child2 = WorldObject()
    child2.rotation.set_from_euler(Euler(0, -pi / 4, 0))
    child1.add(child2)

    objs = [root, child1, child2]
    assert all(obj.matrix_world_dirty for obj in objs)

    # test both updating parents and children
    child1.update_matrix_world(update_parents=True)
    assert all(not obj.matrix_world_dirty for obj in objs)

    p = Vector3(10, 10, 10)
    p.apply_matrix4(child2.matrix)
    p.apply_matrix4(child1.matrix)
    p.apply_matrix4(root.matrix)

    x = Vector3(10, 10, 10)
    x.apply_matrix4(child2.matrix_world)

    # if there is a difference it's a floating point error
    assert Vector3().sub_vectors(p, x).length() < 0.00000000001

    # reorganize such that child1 and 2 become siblings
    child1.remove(child2)
    root.add(child2)
    assert not child1.matrix_world_dirty
    # child2 should be flagged as dirty again now
    assert child2.matrix_world_dirty
Ejemplo n.º 10
0
def test_gimbal_local_quat():
    # known problematic quaternions
    q1 = Quaternion(0.5207769385244341, -0.4783214164122354, 0.520776938524434,
                    0.47832141641223547)
    # q2 = Quaternion(
    #     0.11284905712620674,
    #     0.6980437630368944,
    #     -0.11284905712620674,
    #     0.6980437630368944,
    # )

    euler_order = Euler.RotationOrders.ZYX

    # create Euler directly from a Quaternion
    e_via_q1 = Euler().set_from_quaternion(
        q1, euler_order)  # there is likely a bug here

    # create Euler from Quaternion via an intermediate Matrix4
    m_via_q1 = Matrix4().make_rotation_from_quaternion(q1)
    e_via_m_via_q1 = Euler().set_from_rotation_matrix(m_via_q1, euler_order)

    # the results here are different
    assert euler_equals(e_via_q1, e_via_m_via_q1)  # this result is correcy
Ejemplo n.º 11
0
def test_update_matrix():
    root = WorldObject()
    root.position.set(3, 6, 8)
    root.scale.set(1, 1.2, 1)
    root.rotation.set_from_euler(Euler(pi / 2, 0, 0))
    root.update_matrix()

    t, r, s = Vector3(), Quaternion(), Vector3()
    root.matrix.decompose(t, r, s)
    assert t == root.position
    # todo: do somehting like np.allclose
    # assert r == root.rotation  # close, but not quite the same
    # assert s == root.scale
    assert root.matrix_world_dirty
Ejemplo n.º 12
0
def test_from_array():
    a = Euler()
    array = [x, y, z]

    a.from_array(array)
    assert a.x == x, "No order: check x"
    assert a.y == y, "No order: check y"
    assert a.z == z, "No order: check z"
    assert a.order == Euler.RotationOrders.XYZ, "No order: check order"

    a = Euler()
    array = [x, y, z, Euler.RotationOrders.ZXY]
    a.from_array(array)
    assert a.x == x, "With order: check x"
    assert a.y == y, "With order: check y"
    assert a.z == z, "With order: check z"
    assert a.order == Euler.RotationOrders.ZXY, "With order: check order"
Ejemplo n.º 13
0
def test_multiply_quaternions_multiply():
    angles = [Euler(1, 0, 0), Euler(0, 1, 0), Euler(0, 0, 1)]

    q1 = Quaternion().set_from_euler(
        change_euler_order(angles[0], Euler.RotationOrders.XYZ))
    q2 = Quaternion().set_from_euler(
        change_euler_order(angles[1], Euler.RotationOrders.XYZ))
    q3 = Quaternion().set_from_euler(
        change_euler_order(angles[2], Euler.RotationOrders.XYZ))

    q = Quaternion().multiply_quaternions(q1, q2).multiply(q3)

    m1 = Matrix4().make_rotation_from_euler(
        change_euler_order(angles[0], Euler.RotationOrders.XYZ))
    m2 = Matrix4().make_rotation_from_euler(
        change_euler_order(angles[1], Euler.RotationOrders.XYZ))
    m3 = Matrix4().make_rotation_from_euler(
        change_euler_order(angles[2], Euler.RotationOrders.XYZ))

    m = Matrix4().multiply_matrices(m1, m2).multiply(m3)

    q_from_m = Quaternion().set_from_rotation_matrix(m)

    assert q_sub(q, q_from_m).length() < 0.001
Ejemplo n.º 14
0
def test_rotate_towards():
    a = Quaternion()
    b = Quaternion().set_from_euler(Euler(0, pi, 0))
    c = Quaternion()

    half_pi = pi * 0.5

    a.rotate_towards(b, 0)
    assert a.equals(a) is True

    a.rotate_towards(b, pi * 2)
    # test overshoot
    assert a.equals(b) is True

    a.set(0, 0, 0, 1)
    a.rotate_towards(b, half_pi)
    assert a.angle_to(c) - half_pi <= eps
Ejemplo n.º 15
0
def test_look_at():
    a = Matrix4()
    expected = Matrix4().identity()
    eye = Vector3(0, 0, 0)
    target = Vector3(0, 1, -1)
    up = Vector3(0, 1, 0)

    a.look_at(eye, target, up)
    rotation = Euler().set_from_rotation_matrix(a)
    assert rotation.x * (180 / pi) == 45, "Check the rotation"

    # eye and target are in the same position
    eye.copy(target)
    a.look_at(eye, target, up)
    assert matrix_equals(a, expected), "Check the result for eye == target"

    # up and z are parallel
    eye.set(0, 1, 0)
    target.set(0, 0, 0)
    a.look_at(eye, target, up)
    expected.set(1, 0, 0, 0, 0, 0.0001, 1, 0, 0, -1, 0.0001, 0, 0, 0, 0, 1)
    assert matrix_equals(a, expected), "Check the result for when up and z are parallel"
Ejemplo n.º 16
0
def test_make_rotation_from_eulerextract_rotation():
    test_values = [
        Euler(0, 0, 0, Euler.RotationOrders.XYZ),
        Euler(1, 0, 0, Euler.RotationOrders.XYZ),
        Euler(0, 1, 0, Euler.RotationOrders.ZYX),
        Euler(0, 0, 0.5, Euler.RotationOrders.YZX),
        Euler(0, 0, -0.5, Euler.RotationOrders.YZX),
    ]

    for i in range(len(test_values)):
        v = test_values[i]

        m = Matrix4().make_rotation_from_euler(v)

        v2 = Euler().set_from_rotation_matrix(m, v.order)
        m2 = Matrix4().make_rotation_from_euler(v2)

        assert matrix_equals(m, m2, eps), (
            "make_rotation_from_euler #"
            + i
            + ": original and Euler-derived matrices are equal"
        )
        assert euler_equals(v, v2, eps), (
            "make_rotation_from_euler #"
            + i
            + ": original and matrix-derived Eulers are equal"
        )

        m3 = Matrix4().extract_rotation(m2)
        v3 = Euler().set_from_rotation_matrix(m3, v.order)

        assert matrix_equals(m, m3, eps), (
            "extract_rotation #" + i + ": original and extracted matrices are equal"
        )
        assert euler_equals(v, v3, eps), (
            "extract_rotation #" + i + ": original and extracted Eulers are equal"
        )
Ejemplo n.º 17
0
def test_to_array():
    order = Euler.RotationOrders.YXZ
    a = Euler(x, y, z, order)

    array = a.to_array()
    assert array[0] == x, "No array, no offset: check x"
    assert array[1] == y, "No array, no offset: check y"
    assert array[2] == z, "No array, no offset: check z"
    assert array[3] == order, "No array, no offset: check order"

    array = []
    a.to_array(array)
    assert array[0] == x, "With array, no offset: check x"
    assert array[1] == y, "With array, no offset: check y"
    assert array[2] == z, "With array, no offset: check z"
    assert array[3] == order, "With array, no offset: check order"

    array = []
    a.to_array(array, 1)
    assert array[0] is None, "With array and offset: check [0]"
    assert array[1] == x, "With array and offset: check x"
    assert array[2] == y, "With array and offset: check y"
    assert array[3] == z, "With array and offset: check z"
    assert array[4] == order, "With array and offset: check order"
Ejemplo n.º 18
0
def test_order():
    a = Euler()
    assert a.order == Euler.DefaultOrder

    a = Euler(1, 2, 3)
    assert a.order == Euler.DefaultOrder

    a = Euler(4, 5, 6, Euler.RotationOrders.YZX)
    assert a.order == Euler.RotationOrders.YZX

    a = Euler(7, 8, 9, Euler.RotationOrders.YZX)
    a.order = Euler.RotationOrders.ZXY
    assert a.order == Euler.RotationOrders.ZXY

    a = Euler(11, 12, 13, Euler.RotationOrders.YZX)
    a.order = Euler.RotationOrders.ZXY
    assert a.order == Euler.RotationOrders.ZXY
Ejemplo n.º 19
0
def test_z():
    a = Euler()
    assert a.z == 0

    a = Euler(1, 2, 3)
    assert a.z == 3

    a = Euler(4, 5, 6, Euler.RotationOrders.XYZ)
    assert a.z == 6

    a = Euler(7, 8, 9, Euler.RotationOrders.XYZ)
    a.z = 10
    assert a.z == 10

    a = Euler(11, 12, 13, Euler.RotationOrders.XYZ)
    a.z = 14
    assert a.z == 14
Ejemplo n.º 20
0
def test_y():
    a = Euler()
    assert a.y == 0

    a = Euler(1, 2, 3)
    assert a.y == 2

    a = Euler(4, 5, 6, Euler.RotationOrders.XYZ)
    assert a.y == 5

    a = Euler(7, 8, 9, Euler.RotationOrders.XYZ)
    a.y = 10
    assert a.y == 10

    a = Euler(11, 12, 13, Euler.RotationOrders.XYZ)
    a.y = 14
    assert a.y == 14
Ejemplo n.º 21
0
def test_x():
    a = Euler()
    assert a.x == 0

    a = Euler(1, 2, 3)
    assert a.x == 1

    a = Euler(4, 5, 6, Euler.RotationOrders.XYZ)
    assert a.x == 4

    a = Euler(7, 8, 9, Euler.RotationOrders.XYZ)
    a.x = 10
    assert a.x == 10

    a = Euler(11, 12, 13, Euler.RotationOrders.XYZ)
    a.x = 14
    assert a.x == 14
Ejemplo n.º 22
0
def test_instancing():
    a = Euler()
    assert a.equals(euler_zero)
    assert not a.equals(euler_axyz)
    assert not a.equals(euler_azyx)
Ejemplo n.º 23
0
)

x = 2
y = 3
z = 4
w = 5
eps = 0.0001
orders = [
    Euler.RotationOrders.XYZ,
    Euler.RotationOrders.YXZ,
    Euler.RotationOrders.ZXY,
    Euler.RotationOrders.ZYX,
    Euler.RotationOrders.YZX,
    Euler.RotationOrders.XZY,
]
euler_angles = Euler(0.1, -0.3, 0.25)


def q_sub(a, b):
    result = a.clone()
    result.x -= b.x
    result.y -= b.y
    result.z -= b.z
    result.w -= b.w
    return result


def change_euler_order(euler, order):
    return Euler(euler.x, euler.y, euler.z, order)

Ejemplo n.º 24
0
from pygfx.linalg import (
    Vector3,
    Euler,
    Matrix4,
    Quaternion,
)

from utils import matrix_equals, euler_equals, quat_equals

x = 2
y = 3
z = 4
w = 5
euler_zero = Euler(0, 0, 0, Euler.RotationOrders.XYZ)
euler_axyz = Euler(1, 0, 0, Euler.RotationOrders.XYZ)
euler_azyx = Euler(0, 1, 0, Euler.RotationOrders.ZYX)


# INSTANCING
def test_instancing():
    a = Euler()
    assert a.equals(euler_zero)
    assert not a.equals(euler_axyz)
    assert not a.equals(euler_azyx)


# PROPERTIES STUFF
def test_x():
    a = Euler()
    assert a.x == 0
Ejemplo n.º 25
0
def change_euler_order(euler, order):
    return Euler(euler.x, euler.y, euler.z, order)