Ejemplo n.º 1
0
def benchmark_number_of_minima():
    import time, sys
    import numpy as np
    db = Database("test.large.db")

    if True:
        istart = np.random.randint(0, sys.maxint)
        for i in xrange(istart, istart + 10000):
            e = float(i)
            db.addMinimum(e, [e], commit=False)
        db.session.commit()
    else:
        i = 1

    t1 = time.clock()
    print db.number_of_minima()
    print "time", t1 - time.clock()
    t1 = time.clock()
    print db.number_of_minima()
    print "time", t1 - time.clock()
    t1 = time.clock()
    print db.number_of_minima()
    print "time", t1 - time.clock()
    t1 = time.clock()
    e = float(i + 1)
    db.addMinimum(e, [e], commit=False)
    t1 = time.clock()
    print db.number_of_minima()
    print "time", t1 - time.clock()
    t1 = time.clock()

    print len(db.minima())
    print "time", t1 - time.clock()
    t1 = time.clock()
Ejemplo n.º 2
0
def benchmark_number_of_minima():
    import time, sys
    import numpy as np
    db = Database("test.large.db")
    
    if True:
        istart = np.random.randint(0, sys.maxint)
        for i in xrange(istart,istart+10000):
            e = float(i)
            db.addMinimum(e, [e], commit=False)
        db.session.commit()
    else:
        i=1
    
    t1 = time.clock()
    print db.number_of_minima()
    print "time", t1 - time.clock(); t1 = time.clock()
    print db.number_of_minima()
    print "time", t1 - time.clock(); t1 = time.clock()
    print db.number_of_minima()
    print "time", t1 - time.clock(); t1 = time.clock()
    e = float(i+1)
    db.addMinimum(e, [e], commit=False)
    t1 = time.clock()
    print db.number_of_minima()
    print "time", t1 - time.clock(); t1 = time.clock()

    print len(db.minima())
    print "time", t1 - time.clock(); t1 = time.clock()
Ejemplo n.º 3
0
coords1 = np.genfromtxt("coords.A")
coords2 = np.genfromtxt("coords.B")
res1 = lbfgs_py(coords1.reshape(-1), pot)
res2 = lbfgs_py(coords2.reshape(-1), pot)
coords1 = res1.coords
coords2 = res2.coords
E1 = res1.energy
E2 = res2.energy
natoms = len(coords1)/3

#add the minima to a database
dbfile = "database.sqlite"
database = Database(dbfile)
database.addMinimum(E1, coords1)
database.addMinimum(E2, coords2)
min1 = database.minima()[0]
min2 = database.minima()[1]
    



#set up the structural alignment routine.
#we have to deal with global translational, global rotational,
#and permutational symmetry.
permlist = [range(natoms)]
mindist = MinPermDistAtomicCluster(permlist=permlist, niter=10)

#The transition state search needs to know what the eigenvector corresponding
#to the lowest nonzero eigenvector is.  For this we need to know what the
#eivenvector corresponding to the zero eigenvalues are.  These are related
#to global symmetries.  for this system we have 3 zero eigenvalues for translational
Ejemplo n.º 4
0
class TestDB(unittest.TestCase):
    def setUp(self):
        self.db = Database()
        self.nminima = 10
        for i in range(self.nminima):
            e = float(i)
            self.db.addMinimum(e, [e])

        self.nts = 3
        self.db.addTransitionState(0., [0.],
                                   self.db.minima()[0],
                                   self.db.minima()[1],
                                   eigenval=0.,
                                   eigenvec=[0.])
        self.db.addTransitionState(0., [0.],
                                   self.db.minima()[1],
                                   self.db.minima()[2],
                                   eigenval=0.,
                                   eigenvec=[0.])
        self.db.addTransitionState(0., [0.],
                                   self.db.minima()[0],
                                   self.db.minima()[2],
                                   eigenval=0.,
                                   eigenvec=[0.])

    def test_size(self):
        self.assertEqual(len(self.db.minima()), self.nminima)

    def test_energy(self):
        m = self.db.minima()[0]
        self.assertEqual(m.energy, 0.)

    def test_coords(self):
        m = self.db.minima()[0]
        self.assertEqual(m.coords, [0.])

    def test_sizets(self):
        self.assertEqual(len(self.db.transition_states()), self.nts)

    def test_energyts(self):
        ts = self.db.transition_states()[0]
        self.assertEqual(ts.energy, 0.)

    def test_coordsts(self):
        ts = self.db.transition_states()[0]
        self.assertEqual(ts.coords, [0.])

    def test_remove_minimum(self):
        m = self.db.minima()[0]
        self.db.removeMinimum(m)
        self.assertEqual(len(self.db.minima()), self.nminima - 1)
        self.assertNotIn(m, self.db.minima())

        # m should have 2 minima.  both of those should be gone
        self.assertEqual(len(self.db.transition_states()), self.nts - 2)

    def test_remove_ts(self):
        ts = self.db.transition_states()[0]
        self.db.remove_transition_state(ts)
        self.assertEqual(self.db.number_of_transition_states(), self.nts - 1)
        self.assertNotIn(ts, self.db.transition_states())

        # m should have 2 minima.  both of those should be gone
        self.assertEqual(self.db.number_of_minima(), self.nminima)

    def test_getTransitionState(self):
        m1 = self.db.minima()[0]
        m2 = self.db.minima()[1]
        m3 = self.db.minima()[-1]
        self.assertIsNotNone(self.db.getTransitionState(m1, m2))
        self.assertIsNone(self.db.getTransitionState(m1, m3))

    def test_getMinimum(self):
        m = self.db.minima()[0]
        self.assertEqual(m, self.db.getMinimum(m._id))

    def test_minimum_adder(self):
        ma = self.db.minimum_adder()
        ma(101., [101.])
        self.assertEqual(len(self.db.minima()), self.nminima + 1)

    def test_merge_minima(self):
        m1 = self.db.minima()[0]
        m2 = self.db.minima()[1]
        self.db.mergeMinima(m1, m2)
        self.assertEqual(len(self.db.minima()), self.nminima - 1)
        # transition states shouldn't be deleted
        self.assertEqual(len(self.db.transition_states()), self.nts)

    def test_number_of_minima(self):
        self.assertEqual(self.nminima, self.db.number_of_minima())

    def test_number_of_transition_states(self):
        self.assertEqual(self.nts, self.db.number_of_transition_states())

    def test_highest_energy_minimum(self):
        m1 = self.db._highest_energy_minimum()
        m2 = self.db.minima()[-1]
        self.assertEqual(m1, m2)

    def test_maximum_number_of_minima(self):
        m = self.db.addMinimum(-1., [-1.], max_n_minima=self.nminima)
        self.assertEqual(self.nminima, self.db.number_of_minima())
        self.assertIn(m, self.db.minima())

    def test_maximum_number_of_minima_largestE(self):
        e = float(self.nminima + 1)
        m = self.db.addMinimum(e, [e], max_n_minima=self.nminima)
        self.assertEqual(self.nminima, self.db.number_of_minima())
        self.assertIsNone(m)

        #ensure the highest energy minimum is still in the database
        mmax = self.db._highest_energy_minimum()
        self.assertEqual(mmax.energy, float(self.nminima - 1))

    def test_maximum_number_of_minima_minima_adder(self):
        ma = self.db.minimum_adder(max_n_minima=self.nminima)
        m = ma(-1., [-1.])
        self.assertEqual(self.nminima, self.db.number_of_minima())
        self.assertIn(m, self.db.minima())
Ejemplo n.º 5
0
        self.setCentralWidget(self.dgraph_widget)

    def rebuild_disconnectivity_graph(self):
        self.dgraph_widget.rebuild_disconnectivity_graph()


def reduced_db2graph(db, Emax):
    '''
    make a networkx graph from a database including only transition states with energy < Emax
    '''
    g = nx.Graph()
    ts = db.session.query(TransitionState).filter(
        TransitionState.energy <= Emax).all()
    for t in ts:
        g.add_edge(t.minimum1, t.minimum2, ts=t)
    return g


if __name__ == "__main__":

    db = Database("lj31.db")
    if len(db.minima()) < 2:
        raise Exception("database has no minima")

    app = QApplication(sys.argv)
    md = DGraphDialog(db)
    md.show()
    md.rebuild_disconnectivity_graph()

    sys.exit(app.exec_())
Ejemplo n.º 6
0
    
print "length of path:", len(path_xyz)

path = [ map_to_aa(xyz) for xyz in path_xyz]
#p#ath = [ x for x in IntterpolatedPath(db.minima[19], )]
#path = [ x for x in InterpolatedPath(path[0].copy(), path[-1].copy(), 34) ]
traj = open("traj.xyz", "w")
#for x in path:
#    #export_xyz(traj, x)
#    #ret = quench.mylbfgs(x, pot.getEnergyGradient)
#    #print i,pot.getEnergy(x), ret[1]
#    
#    # export_xyz(traj, ret[0])

db=Database(db="oxdna.sqlite")
path[0]=db.minima()[19].coords
path[-1]=db.minima()[0].coords

e1 = []
e2 = []

e1.append(pot.getEnergy(path[0]))
e2.append(pot.getEnergy(path[0]))

for i in xrange(1):
    for i in xrange(len(path)-1):
        e1.append(pot.getEnergy(path[i+1]))
        c1 = CoordsAdapter(nrigid=13, coords = path[i])
        c2 = CoordsAdapter(nrigid=13, coords = path[i+1])
        com1 = np.sum(c1.posRigid,axis=0) / float(13)
        com2 = np.sum(c1.posRigid,axis=0) / float(13)
Ejemplo n.º 7
0
from pygmin.utils.disconnectivity_graph import DisconnectivityGraph
from pygmin.storage import Database
from pygmin.landscape import TSGraph
import pylab as pl
import numpy as np

kbT = 0.75

db = Database(db="tip4p_8.sqlite", createdb=False)

graph = TSGraph(db)

dg = DisconnectivityGraph(graph.graph, db.minima(), subgraph_size=20)
dg.calculate()
dg.plot()

for m in db.minima():
    if m.pgorder != 2:
        print m.pgorder
    m.free_energy = m.energy + kbT * 0.5*m.fvib + kbT*np.log(m.pgorder)

 
for ts in db.transition_states():
#    if ts.pgorder != 2:
    print ts.pgorder
    #assert ts.pgorder == 2    

    ts.free_energy = ts.energy + kbT * 0.5*ts.fvib + kbT*np.log(ts.pgorder) + kbT*np.log(kbT)
    if ts.free_energy > ts.minimum1.free_energy or ts.free_energy > ts.minimum2.free_energy:        
        print "warning, free energy of transition state lower than minimum"
        print ts.free_energy, ts.minimum1.free_energy, ts.minimum2.free_energy
Ejemplo n.º 8
0
    parser.add_argument("--Tcount", type=int, help="Number of temperature points for the calculation.", default=300)
    parser.add_argument("--OPTIM", action="store_true", help="read data from a min.data file instead."
                        "fname should be the filename of the min.data file")
    args = parser.parse_args()
    print args.fname
    print args
    k = args.k
    
    # get the list of minima
    if args.OPTIM:
        # fname is a min.data file
        minima = read_min_data(args.fname)
    else:
        dbfname = args.fname
        db = Database(dbfname, createdb=False)
        minima = [m for m in db.minima() if m.fvib is not None and m.pgorder is not None]
        if len(minima) == 0:
            print "There are not minima with the necessary thermodynamic information in the database.  Have you computed the normal mode"\
                  " frequencies and point group order for all the minima?  See pygmin.thermodynamics "\
                  " for more information"
            exit(1)
    print "computing heat capacity from", len(minima), "minima"

    Tmin = args.Tmin
    Tmax = args.Tmax
    nT = args.Tcount
    dT = (Tmax-Tmin) / nT
    
    T = np.array([Tmin + dT*i for i in range(nT)])
    Z, U, U2, Cv = minima_to_cv(minima, T, k)
    
Ejemplo n.º 9
0
from pygmin.utils.disconnectivity_graph import DisconnectivityGraph
from pygmin.storage import Database
from pygmin.landscape import TSGraph
import pylab as pl
import numpy as np

kbT = 0.75

db = Database(db="tip4p_8.sqlite", createdb=False)

graph = TSGraph(db)

dg = DisconnectivityGraph(graph.graph, db.minima(), subgraph_size=20)
dg.calculate()
dg.plot()

for m in db.minima():
    if m.pgorder != 2:
        print m.pgorder
    m.free_energy = m.energy + kbT * 0.5 * m.fvib + kbT * np.log(m.pgorder)

for ts in db.transition_states():
    #    if ts.pgorder != 2:
    print ts.pgorder
    #assert ts.pgorder == 2

    ts.free_energy = ts.energy + kbT * 0.5 * ts.fvib + kbT * np.log(
        ts.pgorder) + kbT * np.log(kbT)
    if ts.free_energy > ts.minimum1.free_energy or ts.free_energy > ts.minimum2.free_energy:
        print "warning, free energy of transition state lower than minimum"
        print ts.free_energy, ts.minimum1.free_energy, ts.minimum2.free_energy
Ejemplo n.º 10
0
        self.setCentralWidget(self.dgraph_widget)
    
    def rebuild_disconnectivity_graph(self):
        self.dgraph_widget.rebuild_disconnectivity_graph()
        

def reduced_db2graph(db, Emax):
    '''
    make a networkx graph from a database including only transition states with energy < Emax
    '''
    g = nx.Graph()
    ts = db.session.query(TransitionState).filter(TransitionState.energy <= Emax).all()
    for t in ts: 
        g.add_edge(t.minimum1, t.minimum2, ts=t)
    return g


if __name__ == "__main__":
    
    db = Database("lj31.db")
    if len(db.minima()) < 2:
        raise Exception("database has no minima")
    
    app = QApplication(sys.argv)        
    md = DGraphDialog(db)
    md.show()
    md.rebuild_disconnectivity_graph()
    
    sys.exit(app.exec_()) 
        
Ejemplo n.º 11
0
#path = [ x for x in InterpolatedPath(path[0].copy(), path[-1].copy(), 34) ]
traj = open("traj.xyz", "w")
#for x in path:
#    #export_xyz(traj, x)
#    #ret = quench.mylbfgs(x, pot.getEnergyGradient)
#    #print i,pot.getEnergy(x), ret[1]
#
#    # export_xyz(traj, ret[0])
for x in path:
    export_xyz(traj, x)

import pickle
pickle.dump(path, open("interpolate.pickle", "w"))
exit()
db = Database(db="oxdna.sqlite")
path[0] = db.minima()[19].coords
path[-1] = db.minima()[0].coords

e1 = []
e2 = []

e1.append(pot.getEnergy(path[0]))
e2.append(pot.getEnergy(path[0]))

for i in xrange(1):
    for i in xrange(len(path) - 1):
        e1.append(pot.getEnergy(path[i + 1]))
        c1 = CoordsAdapter(nrigid=13, coords=path[i])
        c2 = CoordsAdapter(nrigid=13, coords=path[i + 1])
        com1 = np.sum(c1.posRigid, axis=0) / float(13)
        com2 = np.sum(c1.posRigid, axis=0) / float(13)
Ejemplo n.º 12
0
class TestDB(unittest.TestCase):
    def setUp(self):
        self.db = Database()
        self.nminima = 10
        for i in range(self.nminima):
            e = float(i)
            self.db.addMinimum(e, [e])
        
        
        self.nts = 3
        self.db.addTransitionState(0., [0.], self.db.minima()[0], self.db.minima()[1], eigenval=0., eigenvec=[0.])
        self.db.addTransitionState(0., [0.], self.db.minima()[1], self.db.minima()[2], eigenval=0., eigenvec=[0.])
        self.db.addTransitionState(0., [0.], self.db.minima()[0], self.db.minima()[2], eigenval=0., eigenvec=[0.])

    def test_size(self):
        self.assertEqual(len(self.db.minima()), self.nminima)
        
    def test_energy(self):
        m = self.db.minima()[0]
        self.assertEqual(m.energy, 0.)

    def test_coords(self):
        m = self.db.minima()[0]
        self.assertEqual(m.coords, [0.])

    def test_sizets(self):
        self.assertEqual(len(self.db.transition_states()), self.nts)
    def test_energyts(self):
        ts = self.db.transition_states()[0]
        self.assertEqual(ts.energy, 0.)

    def test_coordsts(self):
        ts = self.db.transition_states()[0]
        self.assertEqual(ts.coords, [0.])
    
    def test_remove_minimum(self):
        m = self.db.minima()[0]
        self.db.removeMinimum(m)
        self.assertEqual(len(self.db.minima()), self.nminima-1)
        self.assertNotIn(m, self.db.minima())
        
        # m should have 2 minima.  both of those should be gone
        self.assertEqual(len(self.db.transition_states()), self.nts-2)

    def test_remove_ts(self):
        ts = self.db.transition_states()[0]
        self.db.remove_transition_state(ts)
        self.assertEqual(self.db.number_of_transition_states(), self.nts-1)
        self.assertNotIn(ts, self.db.transition_states())
        
        # m should have 2 minima.  both of those should be gone
        self.assertEqual(self.db.number_of_minima(), self.nminima)


    def test_getTransitionState(self):
        m1 = self.db.minima()[0]
        m2 = self.db.minima()[1]
        m3 = self.db.minima()[-1]
        self.assertIsNotNone(self.db.getTransitionState(m1, m2))
        self.assertIsNone(self.db.getTransitionState(m1, m3))
    
    def test_getMinimum(self):
        m = self.db.minima()[0]
        self.assertEqual(m, self.db.getMinimum(m._id))
        
    def test_minimum_adder(self):
        ma = self.db.minimum_adder()
        ma(101., [101.])
        self.assertEqual(len(self.db.minima()), self.nminima+1)
    
    def test_merge_minima(self):
        m1 = self.db.minima()[0]
        m2 = self.db.minima()[1]
        self.db.mergeMinima(m1, m2)
        self.assertEqual(len(self.db.minima()), self.nminima-1)
        # transition states shouldn't be deleted
        self.assertEqual(len(self.db.transition_states()), self.nts)
    
    def test_number_of_minima(self):
        self.assertEqual(self.nminima, self.db.number_of_minima())
    
    def test_number_of_transition_states(self):
        self.assertEqual(self.nts, self.db.number_of_transition_states())
    
    def test_highest_energy_minimum(self):
        m1 = self.db._highest_energy_minimum()
        m2 = self.db.minima()[-1]
        self.assertEqual(m1, m2)
    
    def test_maximum_number_of_minima(self):
        m = self.db.addMinimum(-1., [-1.], max_n_minima=self.nminima)
        self.assertEqual(self.nminima, self.db.number_of_minima())
        self.assertIn(m, self.db.minima())

    def test_maximum_number_of_minima_largestE(self):
        e = float(self.nminima + 1)
        m = self.db.addMinimum(e, [e], max_n_minima=self.nminima)
        self.assertEqual(self.nminima, self.db.number_of_minima())
        self.assertIsNone(m)
        
        #ensure the highest energy minimum is still in the database
        mmax = self.db._highest_energy_minimum()
        self.assertEqual(mmax.energy, float(self.nminima-1))
        
    def test_maximum_number_of_minima_minima_adder(self):
        ma = self.db.minimum_adder(max_n_minima=self.nminima)
        m = ma(-1., [-1.])
        self.assertEqual(self.nminima, self.db.number_of_minima())
        self.assertIn(m, self.db.minima())