Ejemplo n.º 1
0
                        "seed": 1
                    })

# define gPC
gpc = pygpc.Reg(problem=problem,
                order=[n_basis_order] * n_dim,
                order_max=n_basis_order,
                order_max_norm=1,
                interaction_order=n_dim,
                interaction_order_current=n_dim,
                options=options)

gpc.grid = grid

# get number of basis functions
n_basis = pygpc.get_num_coeffs_sparse([n_basis_order] * n_dim, n_basis_order,
                                      n_dim, n_dim, n_dim, 1)

# create coefficient matrix
coeffs = np.ones((len(gpc.basis.b), n_qoi))

#%%
# Running the benchmark
# ^^^^^^^^^^^^^^^^^^^^^
# Per default the **omp**-backend is set. Let's try them all and see how the performance changes.
# If you have installed the CUDA backend you can add "cuda" to the list of backends.
# It is the fastest one and outperforms all other backends.

import time

backends = ["python", "cpu", "omp"]  # "cuda"
labels = ["Python", "C++", "C++ OpenMP"]  # "CUDA"
Ejemplo n.º 2
0
options["error_type"] = "nrmsd"
options["n_samples_validation"] = 1e3
options["n_cpu"] = 0
options["fn_results"] = fn_results
options["save_session_format"] = '.pkl'
options["gradient_enhanced"] = False
options["gradient_calculation"] = "FD_1st2nd"
options["gradient_calculation_options"] = {"dx": 0.05, "distance_weight": -2}
options["backend"] = "omp"
options["grid"] = pygpc.Random
options["grid_options"] = None

# Define grid
n_coeffs = pygpc.get_num_coeffs_sparse(
    order_dim_max=options["order"],
    order_glob_max=options["order_max"],
    order_inter_max=options["interaction_order"],
    dim=problem.dim)

grid = pygpc.Random(parameters_random=problem.parameters_random,
                    n_grid=options["matrix_ratio"] * n_coeffs,
                    seed=1)
# Define algorithm
algorithm = pygpc.Static(problem=problem, options=options, grid=grid)

#%%
# Running the gpc
# ---------------

# Initialize gPC Session
session = pygpc.Session(algorithm=algorithm)
Ejemplo n.º 3
0
    def test_1_Static_gpc(self):
        """
        Algorithm: Static
        Method: Regression
        Solver: Moore-Penrose
        Grid: RandomGrid
        """
        global folder, plot
        test_name = 'pygpc_test_1_Static_gpc'
        print(test_name)

        # define model
        model = pygpc.testfunctions.Peaks()

        # define problem
        parameters = OrderedDict()
        parameters["x1"] = pygpc.Beta(pdf_shape=[1, 1], pdf_limits=[1.2, 2])
        parameters["x2"] = 1.25
        parameters["x3"] = pygpc.Beta(pdf_shape=[1, 1], pdf_limits=[0, 0.6])
        problem = pygpc.Problem(model, parameters)

        # gPC options
        options = dict()
        options["method"] = "reg"
        options["solver"] = "Moore-Penrose"
        options["settings"] = None
        options["order"] = [9, 9]
        options["order_max"] = 9
        options["interaction_order"] = 2
        options["matrix_ratio"] = 2
        options["error_type"] = "nrmsd"
        options["n_cpu"] = 0
        options["fn_results"] = os.path.join(folder, test_name)
        options["gradient_enhanced"] = True
        options["GPU"] = False

        # generate grid
        n_coeffs = pygpc.get_num_coeffs_sparse(order_dim_max=options["order"],
                                               order_glob_max=options["order_max"],
                                               order_inter_max=options["interaction_order"],
                                               dim=problem.dim)

        grid = pygpc.RandomGrid(parameters_random=problem.parameters_random,
                                options={"n_grid": options["matrix_ratio"] * n_coeffs, "seed": 1})

        # define algorithm
        algorithm = pygpc.Static(problem=problem, options=options, grid=grid)

        # run gPC algorithm
        gpc, coeffs, results = algorithm.run()

        # Post-process gPC
        pygpc.get_sensitivities_hdf5(fn_gpc=options["fn_results"],
                                     output_idx=None,
                                     calc_sobol=True,
                                     calc_global_sens=True,
                                     calc_pdf=True,
                                     algorithm="standard",
                                     n_samples=1e3)

        # Validate gPC vs original model function (Monte Carlo)
        nrmsd = pygpc.validate_gpc_mc(gpc=gpc,
                                      coeffs=coeffs,
                                      n_samples=int(1e4),
                                      output_idx=0,
                                      fn_out=None,
                                      plot=plot)

        files_consistent, error_msg = pygpc.check_file_consistency(options["fn_results"] + ".hdf5")

        print("> Maximum NRMSD (gpc vs original): {:.2}%".format(np.max(nrmsd)))
        # self.expect_true(np.max(nrmsd) < 0.1, 'gPC test failed with NRMSD error = {:1.2f}%'.format(np.max(nrmsd)*100))
        print("> Checking file consistency...")
        self.expect_true(files_consistent, error_msg)

        print("done!\n")