def rank(self, graph=None, personalization=None, *args, **kwargs): personalization = to_signal(graph, personalization) norm = backend.sum(backend.abs(personalization.np)) ranks = self.ranker(graph, personalization, *args, **kwargs) if norm != 0: ranks.np = ranks.np * norm / backend.sum(backend.abs(ranks.np)) return ranks
def rank(self, graph: GraphSignalGraph = None, personalization: GraphSignalData = None, warm_start: GraphSignalData = None, graph_dropout: float = 0, *args, **kwargs) -> GraphSignal: personalization = to_signal(graph, personalization) self._prepare(personalization) personalization = self.personalization_transform(personalization) personalization_norm = backend.sum(backend.abs(personalization.np)) if personalization_norm == 0: return personalization personalization = to_signal(personalization, personalization.np / personalization_norm) ranks = to_signal( personalization, backend.copy(personalization.np) if warm_start is None else warm_start) M = self.preprocessor(personalization.graph) self.convergence.start() self._start(backend.graph_dropout(M, graph_dropout), personalization, ranks, *args, **kwargs) while not self.convergence.has_converged(ranks.np): self._step(backend.graph_dropout(M, graph_dropout), personalization, ranks, *args, **kwargs) self._end(backend.graph_dropout(M, graph_dropout), personalization, ranks, *args, **kwargs) ranks.np = ranks.np * personalization_norm return ranks
def __culep(self, personalization: BackendPrimitive, sensitive: BackendPrimitive, ranks: BackendPrimitive, params: List[float]): ranks = ranks.np / backend.max(ranks.np) #personalization = personalization / backend.max(personalization) res = ranks if self.parameter_buckets == 0 else 0 for i in range(self.parameter_buckets): a = sensitive * (params[0 + 4 * i] - params[1 + 4 * i]) + params[1 + 4 * i] b = sensitive * (params[2 + 4 * i] - params[3 + 4 * i]) + params[3 + 4 * i] if self.error_skewing: res = res + (1 - a) * backend.exp( b * (ranks - personalization)) + a * backend.exp( -b * (ranks - personalization)) else: res = res + (1 - a) * backend.exp( b * backend.abs(ranks - personalization) ) + a * backend.exp(-b * backend.abs(ranks - personalization)) return (1.0 - params[-1]) * res + personalization * params[-1]
def _run(self, personalization: GraphSignal, params: object, base=None, *args, **kwargs): params = backend.to_primitive(params) div = backend.sum(backend.abs(params)) if div != 0: params = params / div if self.basis != "krylov": if base is None: M = self.ranker_generator(params).preprocessor( personalization.graph) base = arnoldi_iteration(M, personalization.np, len(params))[0] ret = 0 for i in range(backend.length(params)): ret = ret + params[i] * base[:, i] return to_signal(personalization, ret) return self.ranker_generator(params).rank(personalization, *args, **kwargs)
def evaluate(self, scores: GraphSignalData) -> BackendPrimitive: known_scores, scores = self.to_numpy(scores) return 1 - backend.sum( backend.abs(known_scores - scores)) / backend.length(scores)
def evaluate(self, scores: GraphSignalData) -> BackendPrimitive: known_scores, scores = self.to_numpy(scores) return backend.max(backend.abs(known_scores - scores))
def _tune(self, graph=None, personalization=None, *args, **kwargs): #graph_dropout = kwargs.get("graph_dropout", 0) #kwargs["graph_dropout"] = 0 previous_backend = backend.backend_name() personalization = to_signal(graph, personalization) graph = personalization.graph if self.tuning_backend is not None and self.tuning_backend != previous_backend: backend.load_backend(self.tuning_backend) backend_personalization = to_signal( personalization, backend.to_array(personalization.np)) #training, validation = split(backend_personalization, 0.8) #training2, validation2 = split(backend_personalization, 0.6) #measure_weights = [1, 1, 1, 1, 1] #propagated = [training.np, validation.np, backend_personalization.np, training2.np, validation2.np] measure_values = [None] * (self.num_parameters + self.autoregression) M = self.ranker_generator(measure_values).preprocessor(graph) #for _ in range(10): # backend_personalization.np = backend.conv(backend_personalization.np, M) training, validation = split(backend_personalization, 0.8) training1, training2 = split(training, 0.5) propagated = [training1.np, training2.np] measures = [ self.measure(backend_personalization, training1), self.measure(backend_personalization, training2) ] #measures = [self.measure(validation, training), self.measure(training, validation)] if self.basis == "krylov": for i in range(len(measure_values)): measure_values[i] = [ measure(p) for p, measure in zip(propagated, measures) ] propagated = [backend.conv(p, M) for p in propagated] else: basis = [ arnoldi_iteration(M, p, len(measure_values))[0] for p in propagated ] for i in range(len(measure_values)): measure_values[i] = [ float(measure(base[:, i])) for base, measure in zip(basis, measures) ] measure_values = backend.to_primitive(measure_values) mean_value = backend.mean(measure_values, axis=0) measure_values = measure_values - mean_value best_parameters = measure_values measure_weights = [1] * measure_values.shape[1] if self.autoregression != 0: #vals2 = -measure_values-mean_value #measure_values = np.concatenate([measure_values, vals2-np.mean(vals2, axis=0)], axis=1) window = backend.repeat(1. / self.autoregression, self.autoregression) beta1 = 0.9 beta2 = 0.999 beta1t = 1 beta2t = 1 rms = window * 0 momentum = window * 0 error = float('inf') while True: beta1t *= beta1 beta2t *= beta2 prev_error = error parameters = backend.copy(measure_values) for i in range(len(measure_values) - len(window) - 2, -1, -1): parameters[i, :] = backend.dot( (window), measure_values[(i + 1):(i + len(window) + 1), :]) errors = (parameters - measure_values ) * measure_weights / backend.sum(measure_weights) for j in range(len(window)): gradient = 0 for i in range(len(measure_values) - len(window) - 1): gradient += backend.dot(measure_values[i + j + 1, :], errors[i, :]) momentum[j] = beta1 * momentum[j] + ( 1 - beta1) * gradient #*np.sign(window[j]) rms[j] = beta2 * rms[j] + (1 - beta2) * gradient * gradient window[j] -= 0.01 * momentum[j] / (1 - beta1t) / ( (rms[j] / (1 - beta2t))**0.5 + 1.E-8) #window[j] -= 0.01*gradient*np.sign(window[j]) error = backend.mean(backend.abs(errors)) if error == 0 or abs(error - prev_error) / error < 1.E-6: best_parameters = parameters break best_parameters = backend.mean(best_parameters[:self.num_parameters, :] * backend.to_primitive(measure_weights), axis=1) + backend.mean(mean_value) if self.tunable_offset is not None: div = backend.max(best_parameters) if div != 0: best_parameters /= div measure = self.tunable_offset(validation, training) base = basis[0] if self.basis != "krylov" else None best_offset = optimize( lambda params: -measure.best_direction() * measure( self._run(training, [(best_parameters[i] + params[ 2]) * params[0]**i + params[1] for i in range( len(best_parameters))], base, *args, **kwargs)), #lambda params: - measure.evaluate(self._run(training, best_parameters + params[0], *args, **kwargs)), max_vals=[1, 0, 0], min_vals=[0, 0, 0], deviation_tol=0.005, parameter_tol=1, partitions=5, divide_range=2) #best_parameters += best_offset[0] best_parameters = [ (best_parameters[i] + best_offset[2]) * best_offset[0]**i + best_offset[1] for i in range(len(best_parameters)) ] best_parameters = backend.to_primitive(best_parameters) if backend.sum(backend.abs(best_parameters)) != 0: best_parameters /= backend.mean(backend.abs(best_parameters)) if self.tuning_backend is not None and self.tuning_backend != previous_backend: best_parameters = [ float(param) for param in best_parameters ] # convert parameters to backend-independent list backend.load_backend(previous_backend) #kwargs["graph_dropout"] = graph_dropout if self.basis != "krylov": return Tautology(), self._run( personalization, best_parameters, *args, **kwargs) # TODO: make this unecessary return self.ranker_generator(best_parameters), personalization