Ejemplo n.º 1
0
def test_unsupervised_vs_auc():
    def loader():
        return pg.load_datasets_multiple_communities(["graph9"])

    algorithms = pg.create_variations(pg.create_many_filters(), pg.create_many_variation_types())
    time_scores = pg.benchmark_scores(pg.benchmark(algorithms, loader(), pg.Time))
    assert sum(time_scores) > 0

    measures = {"AUC": lambda ground_truth, exlude: pg.MultiSupervised(pg.AUC, ground_truth, exlude),
                "NDCG": lambda ground_truth, exlude: pg.MultiSupervised(pg.NDCG, ground_truth, exlude),
                "Density": lambda graph: pg.MultiUnsupervised(pg.Density, graph),
                "Conductance": lambda graph: pg.MultiUnsupervised(pg.Conductance(autofix=True).as_unsupervised_method(), graph),
                "Modularity": lambda graph: pg.MultiUnsupervised(pg.Modularity(max_positive_samples=5).as_unsupervised_method(), graph),
                "CCcos": lambda graph: pg.ClusteringCoefficient(graph, similarity="cos", max_positive_samples=5),
                "CCdot": lambda graph: pg.ClusteringCoefficient(graph, similarity="dot", max_positive_samples=5),
                "LinkAUCcos": lambda graph: pg.LinkAssessment(graph, similarity="cos", max_positive_samples=5),
                "LinkAUCdot": lambda graph: pg.LinkAssessment(graph, similarity="dot", max_positive_samples=5),
                "HopAUCcos": lambda graph: pg.LinkAssessment(graph, similarity="cos", hops=2, max_positive_samples=5),
                "HopAUCdot": lambda graph: pg.LinkAssessment(graph, similarity="dot", hops=2, max_positive_samples=5),
                }

    scores = {}#measure: pg.benchmark_scores(pg.benchmark(algorithms, loader(), measures[measure])) for measure in measures}
    for measure in measures:  # do this as a for loop, because pytest becomes a little slow above list comprehension
        scores[measure] = pg.benchmark_scores(pg.benchmark(algorithms, loader(), measures[measure]))
    supervised = {"AUC", "NDCG"}
    evaluations = dict()
    for measure in measures:
        evaluations[measure] = abs(pg.SpearmanCorrelation(scores["AUC"])(scores[measure]))
    #for measure in measures:
    #    print(measure, evaluations[measure])
    assert max([evaluations[measure] for measure in measures if measure not in supervised]) == evaluations["LinkAUCdot"]
Ejemplo n.º 2
0
def test_correlation_compliance():
    graph = next(pg.load_datasets_graph(["graph5"]))
    # TODO: Make spearman and pearson correlation support tensorflow
    alg1 = pg.PageRank(alpha=0.5)
    alg2 = pg.PageRank(alpha=0.99)
    pearson_ordinals = pg.PearsonCorrelation(pg.Ordinals(alg1)(graph))(
        pg.Ordinals(alg2)(graph))
    spearman = pg.SpearmanCorrelation(alg1(graph))(alg2(graph))
    assert pearson_ordinals == spearman
Ejemplo n.º 3
0
def test_venuerank():
    graph = next(pg.load_datasets_graph(["bigraph"]))
    for _ in supported_backends():
        venuerank = pg.PageRank(alpha=0.85,
                                max_iters=10000,
                                converge_to_eigenvectors=True,
                                tol=1.E-12)
        venuerank_result = venuerank.rank(graph)
        small_restart = pg.PageRank(alpha=0.99, max_iters=10000, tol=1.E-12)
        small_restart_result = small_restart.rank(graph)
        #assert venuerank.convergence.iteration < small_restart.convergence.iteration / 2
        corr = pg.SpearmanCorrelation(pg.Ordinals()(venuerank_result))(
            pg.Ordinals()(small_restart_result))
        assert corr > 0.99
Ejemplo n.º 4
0
def test_rank_order_convergence():
    graph = next(pg.load_datasets_graph(["graph9"]))
    algorithm1 = pg.Ordinals(pg.PageRank(0.85, tol=1.E-12, max_iters=1000))
    algorithm2 = pg.Ordinals(
        pg.PageRank(0.85, convergence=pg.RankOrderConvergenceManager(0.85)))
    algorithm3 = pg.Ordinals(
        pg.PageRank(0.85,
                    convergence=pg.RankOrderConvergenceManager(
                        0.85, 0.99, "fraction_of_walks")))
    for _ in supported_backends():
        ranks1 = algorithm1.rank(graph, {"A": 1})
        ranks2 = algorithm2.rank(graph, {"A": 1})
        ranks3 = algorithm3.rank(graph, {"A": 1})
        assert pg.SpearmanCorrelation(ranks1)(ranks2) > 0.95
        assert pg.SpearmanCorrelation(ranks1)(ranks3) > 0.95
        assert pg.SpearmanCorrelation(ranks3)(ranks2) > 0.95
        assert "17 iterations" in str(algorithm3.ranker.convergence)
        with pytest.raises(Exception):
            algorithm = pg.Ordinals(
                pg.PageRank(0.85,
                            convergence=pg.RankOrderConvergenceManager(
                                0.85, 0.99, "unknown")))
            algorithm.rank(graph, {"A": 1})
Ejemplo n.º 5
0
import pygrank as pg

loader = list(pg.load_datasets_multiple_communities(["bigraph", "cora", "citeseer"]))
algorithms = pg.create_variations(pg.create_demo_filters(), pg.create_many_variation_types())
algorithms = pg.create_variations(algorithms, pg.Normalize)  # add normalization to all algorithms
print("Algorithms", len(algorithms))

measures = {"AUC": lambda ground_truth, exlude: pg.MultiSupervised(pg.AUC, ground_truth, exlude),
            "NDCG": lambda ground_truth, exlude: pg.MultiSupervised(pg.NDCG, ground_truth, exlude),
            "Density": lambda graph: pg.MultiUnsupervised(pg.Density, graph),
            "Modularity": lambda graph: pg.MultiUnsupervised(pg.Modularity, graph),
            "LinkCC": lambda graph: pg.ClusteringCoefficient(graph, similarity="dot"),
            "LinkAUCcos": lambda graph: pg.LinkAssessment(graph, similarity="cos"),
            "HopAUCdot": lambda graph: pg.LinkAssessment(graph, similarity="dot", hops=2),
            }

scores = {measure: pg.benchmark_scores(pg.benchmark(algorithms, loader, measures[measure])) for measure in measures}
evaluations_vs_auc = dict()
evaluations_vs_ndcg = dict()
for measure in measures:
    evaluations_vs_auc[measure] = abs(pg.SpearmanCorrelation(scores["AUC"])(scores[measure]))
    evaluations_vs_ndcg[measure] = abs(pg.SpearmanCorrelation(scores["NDCG"])(scores[measure]))

pg.benchmark_print([("Measure", "AUC corr", "NDCG corr")]
                   + [(measure, evaluations_vs_auc[measure], evaluations_vs_ndcg[measure]) for measure in measures])