Ejemplo n.º 1
0
def test_brownian():
    lambda_0 = 0.05 # reorganization energy (dimensionless)
    omega_0   = 1.0 # vibrational frequency (dimensionless) 
    zeta      = 0.5 # damping constant      (dimensionless)
    max_tier  = 5
    omega_1 = np.sqrt(omega_0**2 - zeta**2*0.25)

    J = pyheom.Brownian(lambda_0, zeta, omega_0)

    corr_dict = pyheom.noise_decomposition(
        J,
        T = 1,                      # temperature (dimensionless)
        type_LTC = 'PSD',
        n_PSD = 1,
        type_PSD = 'N-1/N'
    )
    s = corr_dict['s'].toarray()
    a = corr_dict['a'].toarray()
    gamma = corr_dict['gamma'].toarray()
    delta = 0

    h = np.array([[omega_1, 0],
                [0, 0]])

    op = np.array([[0, 1],
                [1, 0]])

    max_terms = 3
    corr = Correlation(k_max=max_terms, beta=1)
    corr.symm_coeff = np.diag(s)
    corr.asymm_coeff = np.diag(a)
    corr.exp_coeff = np.diag(gamma)
    corr.delta_coeff = delta
    corr.print()
    heom = Hierachy([max_tier] * max_terms, h, op, corr)
    rho_0 = np.zeros((2, 2))
    rho_0[0, 0] = 1

    init_wfn = heom.gen_extended_rho(rho_0)


    solver = MultiLayer(init_wfn, heom.diff())


    # Define the obersevable of interest
    dat = []
    for n, (time, r) in enumerate(solver.propagator(
        steps=5000,
        ode_inter=0.01,
    )):
        if n % 100 == 0:
            rho = np.reshape(r, (-1, 4))
            for n, _rn in enumerate(rho):
                if n == 0:
                    flat_data = [time] + list(rho[0])
                    dat.append(flat_data)
                if n <= 0:
                    print("Time: {}    ; {}:    {}".format(time, n, _rn[0] + _rn[-1]))
    return np.array(dat)
Ejemplo n.º 2
0
def gen_ref():
    lambda_0 = 0.05 # reorganization energy (dimensionless)
    omega_0   = 1.0 # vibrational frequency (dimensionless) 
    zeta      = 0.5 # damping constant      (dimensionless)
    max_tier  = 5

    J = pyheom.Brownian(lambda_0, zeta, omega_0)
    corr_dict = pyheom.noise_decomposition(
        J,
        T = 1,                      # temperature (dimensionless)
        type_LTC = 'PSD',
        n_PSD = 1,
        type_PSD = 'N-1/N'
    )

    n_state = 2

    omega_1 = np.sqrt(omega_0**2 - zeta**2 * 0.25)
    H = np.array([[omega_1, 0],
                [0, 0]])

    V = np.array([[0, 1],
                [1, 0]])

    noises = [
        dict(V=V, C=corr_dict)
    ]

    h = pyheom.HEOM(
        H,
        noises,
        max_tier=max_tier,
        matrix_type='dense',
        hierarchy_connection='loop',
    )
        
    dt__unit = 5.0e-3
            
    rho_0 = np.zeros((n_state,n_state))
    rho_0[0, 0] = 1
    h.set_rho(rho_0)
                
    callback_interval = 5
    count             = 10000

    ref = []
    def callback(t, rho):
        flat_data = [t] + list(np.reshape(rho, -1))
        ref.append(flat_data)
    h.time_evolution(dt__unit, count, callback, callback_interval)
    return np.array(ref)
Ejemplo n.º 3
0
def test_drude_train():
    eta = 0.05  # reorganization energy (dimensionless)
    gamma_c = 0.05  # vibrational frequency (dimensionless)
    max_tier = 10

    max_terms = 3
    J = pyheom.Drudian(eta, gamma_c)
    corr_dict = pyheom.noise_decomposition(
        J,
        T=1,  # temperature (dimensionless)
        type_LTC='PSD',
        n_PSD=max_terms - 1,
        type_PSD='N-1/N')

    s = corr_dict['s'].toarray()
    a = corr_dict['a'].toarray()
    gamma = corr_dict['gamma'].toarray()
    delta = 0

    omega_1 = 0.05
    omega_2 = 0.02
    H = np.array([[omega_1, omega_2], [omega_2, 0]])

    V = np.array([[0, 0], [0, 1]])

    corr = Correlation(k_max=max_terms, beta=1)
    corr.symm_coeff = np.diag(s)
    corr.asymm_coeff = np.diag(a)
    corr.exp_coeff = np.diag(gamma)
    corr.delta_coeff = delta
    corr.print()
    heom = Hierachy([max_tier] * max_terms, H, V, corr)

    rho_0 = np.zeros((2, 2))
    rho_0[0, 0] = 1

    # TT HEOM
    tensor_train = tensor_train_template(rho_0, [max_tier] * max_terms,
                                         rank=max_tier)
    root = tensor_train[0]

    leaves_dict = {leaf.name: leaf for leaf in root.leaves()}
    all_terms = []
    for term in heom.diff():
        all_terms.append([(leaves_dict[str(fst)], snd) for fst, snd in term])

    solver = MultiLayer(root, all_terms)
    solver.ode_method = 'RK45'
    solver.snd_order = False
    solver.max_ode_steps = 100000

    # Define the obersevable of interest
    projector = np.zeros((max_tier, 1))
    projector[0] = 1.0

    dat = []
    for n, (time,
            r) in enumerate(solver.propagator(
                steps=20000,
                ode_inter=0.01,
            )):
        head = root.array
        for t in tensor_train[1:]:
            spf = Tensor.partial_product(t.array, 1, projector, 0)
            head = Tensor.partial_product(head, head.ndim - 1, spf, 0)

        rho = np.reshape(head, (4, -1))[:, 0]
        flat_data = [time] + list(rho)
        dat.append(flat_data)
        print("Time {} | Pop_1 {} | Total {}".format(time, rho[0],
                                                     rho[0] + rho[-1]))

    return np.array(dat)
Ejemplo n.º 4
0
import pyheom
pyheom.units['energy'] = pyheom.unit.dimensionless
pyheom.units['time'] = pyheom.unit.dimensionless
import tqdm

lambda_0 = 0.01  # reorganization energy (dimensionless)
omega_0 = 1  # vibrational frequency (dimensionless)
zeta = 0.5  # damping constant      (dimensionless)
T = 1  # temperature           (dimensionless)
max_tier = 5

J = pyheom.brown(lambda_0, zeta, omega_0)

corr_dict = pyheom.noise_decomposition(J,
                                       T=T,
                                       type_ltc='psd',
                                       n_psd=1,
                                       type_psd='N-1/N')

n_state = 2

omega_1 = np.sqrt(omega_0**2 - zeta**2 * 0.25)
H = np.array([[omega_1, 0], [0, 0]])

V = np.array([[0, 1], [1, 0]])

noises = [dict(V=V, C=corr_dict)]

h = pyheom.heom(
    H,
    noises,
Ejemplo n.º 5
0
from minitn.lib.units import Quantity
from minitn.lib.logging import Logger

import pyheom

# Bath
lambda_0 = 0.01  # reorganization energy (dimensionless)
omega_0 = 1.0  # vibrational frequency (dimensionless)
zeta = 0.5  # damping constant      (dimensionless)
max_tier = 5
max_terms = 2

J = pyheom.Brownian(lambda_0, zeta, omega_0)
corr_dict = pyheom.noise_decomposition(
    J,
    T=1,  # temperature (dimensionless)
    type_LTC='PSD',
    n_PSD=max_terms - 1,
    type_PSD='N-1/N')

# System
n_state = 2
omega_1 = np.sqrt(omega_0**2 - zeta**2 * 0.25)
H = np.array([[omega_1, 0.0], [0.0, 0.0]])
V = np.array([[0.0, 1.0], [1.0, 0.0]])

# init state
rho_0 = np.zeros((n_state, n_state))
rho_0[0, 0] = 1

dt_unit = 0.001
callback_interval = 100
Ejemplo n.º 6
0
def test_drude_tree():
    eta = 0.05  # reorganization energy (dimensionless)
    gamma_c = 0.05  # vibrational frequency (dimensionless)
    max_tier = 10

    max_terms = 3
    J = pyheom.Drudian(eta, gamma_c)
    corr_dict = pyheom.noise_decomposition(
        J,
        T=1,  # temperature (dimensionless)
        type_LTC='PSD',
        n_PSD=max_terms - 1,
        type_PSD='N-1/N')

    s = corr_dict['s'].toarray()
    a = corr_dict['a'].toarray()
    gamma = corr_dict['gamma'].toarray()
    delta = 0

    omega_1 = 0.05
    omega_2 = 0.02
    H = np.array([[omega_1, omega_2], [omega_2, 0]])

    V = np.array([[0, 0], [0, 1]])

    corr = Correlation(k_max=max_terms, beta=1)
    corr.symm_coeff = np.diag(s)
    corr.asymm_coeff = np.diag(a)
    corr.exp_coeff = np.diag(gamma)
    corr.delta_coeff = delta
    corr.print()
    heom = Hierachy([max_tier] * max_terms, H, V, corr)

    rho_0 = np.zeros((2, 2))
    rho_0[0, 0] = 1

    root = tensor_tree_template(rho_0, [max_tier] * max_terms,
                                rank=max_tier // 2)

    solver = MultiLayer(root, heom.diff(), use_str_name=True)
    solver.ode_method = 'RK45'
    solver.snd_order = False
    solver.max_ode_steps = 100000

    dat = []
    for n, (time,
            r) in enumerate(solver.propagator(
                steps=20000,
                ode_inter=0.01,
            )):
        if n % 100 == 0:

            head = root.array

            print(head.shape)

            rho = Tensor.partial_product(r.array, 0, r[0][0].array, 0)
            rho = np.reshape(rho, (-1, 4))

            flat_data = [time] + list(rho[0])
            dat.append(flat_data)
            print("Time: {} | Pop 0: {} | Total: {}".format(
                flat_data[0], flat_data[1], flat_data[1] + flat_data[-1]))

    return np.array(dat)