Ejemplo n.º 1
0
    def test_FieldVariable(self):
        self.assertRaises(TypeError, ph.FieldVariable, "test_funcs",
                          [0, 0])  # list instead of tuple
        self.assertRaises(ValueError, ph.FieldVariable, "test_funcs",
                          (3, 0))  # order too high
        self.assertRaises(ValueError, ph.FieldVariable, "test_funcs",
                          (0, 3))  # order too high
        self.assertRaises(ValueError, ph.FieldVariable, "test_funcs",
                          (2, 2))  # order too high
        self.assertRaises(ValueError, ph.FieldVariable, "test_funcs",
                          (-1, 3))  # order negative

        # defaults
        a = ph.FieldVariable("test_funcs")
        self.assertEqual((0, 0), a.order)
        self.assertEqual(
            "test_funcs",
            a.data["weight_lbl"])  # default weight label is function label
        self.assertEqual(None, a.location)
        self.assertEqual(1, a.data["exponent"])  # default exponent is 1

        b = ph.FieldVariable("test_funcs",
                             order=(1, 1),
                             location=7,
                             weight_label="test_lbl",
                             exponent=10)
        self.assertEqual((1, 1), b.order)
        self.assertEqual(
            "test_lbl",
            b.data["weight_lbl"])  # default weight label is function label
        self.assertEqual(7, b.location)
        self.assertEqual(10, b.data["exponent"])
Ejemplo n.º 2
0
    def setUp(self):
        self.u = np.sin
        self.input = ph.Input(self.u)  # control input
        nodes, self.ini_funcs = cure_interval(LagrangeFirstOrder, (0, 1),
                                              node_count=3)
        register_base("ini_funcs", self.ini_funcs, overwrite=True)

        self.phi = ph.TestFunction(
            "ini_funcs")  # eigenfunction or something else
        self.dphi = ph.TestFunction("ini_funcs",
                                    order=1)  # eigenfunction or something else
        self.dphi_at1 = ph.TestFunction(
            "ini_funcs", order=1,
            location=1)  # eigenfunction or something else
        self.field_var = ph.FieldVariable("ini_funcs")
        self.field_var_at1 = ph.FieldVariable("ini_funcs", location=1)
Ejemplo n.º 3
0
    def setUp(self):
        interval = (0, 1)
        nodes, funcs = sf.cure_interval(sf.LagrangeFirstOrder, interval, 3)
        register_base("funcs", funcs, overwrite=True)
        x = ph.FieldVariable("funcs")
        x_dt = ph.TemporalDerivedFieldVariable("funcs", 1)
        x_dz = ph.SpatialDerivedFieldVariable("funcs", 1)
        register_base("scal_func", cr.Function(np.exp), overwrite=True)
        exp = ph.ScalarFunction("scal_func")

        alpha = 2
        self.term1 = ph.IntegralTerm(x_dt, interval, 1 + alpha)
        self.term2 = ph.IntegralTerm(x_dz, interval, 2)
        self.term3 = ph.IntegralTerm(ph.Product(x, exp), interval)

        self.weight_label = "funcs"
        self.weights = np.hstack([1, 1, 1, 2, 2, 2])
Ejemplo n.º 4
0
    def setUp(self):
        self.input = ph.Input(np.sin)

        phi = cr.Function(np.sin)
        psi = cr.Function(np.cos)
        self.t_funcs = np.array([phi, psi])
        register_base("funcs", self.t_funcs, overwrite=True)
        self.test_funcs = ph.TestFunction("funcs")

        self.s_funcs = np.array([cr.Function(self.scale)])[[0, 0]]
        register_base("scale_funcs", self.s_funcs, overwrite=True)
        self.scale_funcs = ph.ScalarFunction("scale_funcs")

        nodes, self.ini_funcs = cure_interval(LagrangeFirstOrder, (0, 1),
                                              node_count=2)
        register_base("prod_ini_funcs", self.ini_funcs, overwrite=True)
        self.field_var = ph.FieldVariable("prod_ini_funcs")
        self.field_var_dz = ph.SpatialDerivedFieldVariable("prod_ini_funcs", 1)
Ejemplo n.º 5
0
    def setUp(self):
        interval = (0, 1)
        nodes, funcs = sf.cure_interval(sf.LagrangeFirstOrder, interval, 3)
        register_base("funcs", funcs, overwrite=True)
        x_at1 = ph.FieldVariable("funcs", location=1)
        x_dt_at1 = ph.TemporalDerivedFieldVariable("funcs", 1, location=1)
        x_dz_at0 = ph.SpatialDerivedFieldVariable("funcs", 1, location=0)

        exp_func = cr.Function(np.exp)
        register_base("exp_func", exp_func, overwrite=True)
        exp_at1 = ph.ScalarFunction("exp_func", location=1)

        alpha = 2
        self.term1 = ph.ScalarTerm(x_dt_at1, 1 + alpha)
        self.term2 = ph.ScalarTerm(x_dz_at0, 2)
        self.term3 = ph.ScalarTerm(ph.Product(x_at1, exp_at1))

        self.weight_label = "funcs"
        self.weights = np.array([1, 1, 1, 2, 2, 2])
Ejemplo n.º 6
0
])

# create test-functions
nodes, fem_funcs = sh.cure_interval(sh.LagrangeFirstOrder,
                                    spatial_domain.bounds,
                                    node_count=len(spatial_domain))

# register functions
re.register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True)
re.register_base("eig_funcs", eig_funcs, overwrite=True)
re.register_base("eig_funcs_i", eig_funcs_i, overwrite=True)
re.register_base("eig_funcs_ti", eig_funcs_ti, overwrite=True)
re.register_base("fem_funcs", fem_funcs, overwrite=True)

# original intermediate (_i), target intermediate (_ti) and fem field variable
fem_field_variable = ph.FieldVariable("fem_funcs", location=l)
field_variable_i = ph.FieldVariable("eig_funcs_i",
                                    weight_label="eig_funcs",
                                    location=l)
d_field_variable_i = ph.SpatialDerivedFieldVariable("eig_funcs_i",
                                                    1,
                                                    weight_label="eig_funcs",
                                                    location=l)
field_variable_ti = ph.FieldVariable("eig_funcs_ti",
                                     weight_label="eig_funcs",
                                     location=l)
d_field_variable_ti = ph.SpatialDerivedFieldVariable("eig_funcs_ti",
                                                     1,
                                                     weight_label="eig_funcs",
                                                     location=l)
Ejemplo n.º 7
0
eig_values = a0 - a2 * eig_freq ** 2 - a1 ** 2 / 4. / a2
norm_fac = np.ones(eig_freq.shape) * np.sqrt(2)
eig_funcs = np.asarray(
    [ef.SecondOrderDirichletEigenfunction(eig_freq[i], param, spatial_domain.bounds, norm_fac[i]) for i in range(n)])
re.register_base("eig_funcs", eig_funcs, overwrite=True)

# eigenfunctions target system
eig_freq_t = np.sqrt(-eig_values.astype(complex))
norm_fac_t = norm_fac * eig_freq / eig_freq_t
eig_funcs_t = np.asarray(
    [ef.SecondOrderDirichletEigenfunction(eig_freq_t[i], param_t, spatial_domain.bounds, norm_fac_t[i]) for i in
     range(n)])
re.register_base("eig_funcs_t", eig_funcs_t, overwrite=True)

# init controller
x_at_1 = ph.FieldVariable("eig_funcs", location=1)
xt_at_1 = ph.FieldVariable("eig_funcs_t", weight_label="eig_funcs", location=1)
controller = ct.Controller(ct.ControlLaw([ph.ScalarTerm(x_at_1, 1), ph.ScalarTerm(xt_at_1, -1)]))

# derive initial field variable x(z,0) and weights
start_state = cr.Function(lambda z: init_profile)
initial_weights = cr.project_on_base(start_state, eig_funcs)

# init trajectory
traj = tr.RadTrajectory(l, T, param_t, bound_cond_type, actuation_type)

# input with feedback
control_law = sim.SimulationInputSum([traj, controller])

# determine (A,B) with modal-transfomation
A = np.diag(eig_values)
Ejemplo n.º 8
0
    [ef.SecondOrderRobinEigenfunction(eig_freq_t[i], param_t, spatial_domain.bounds).scale(eig_funcs[i](0))
     for i in range(n)])

# create fem test functions
nodes, fem_funcs = sh.cure_interval(sh.LagrangeFirstOrder,
                                    spatial_domain.bounds,
                                    node_count=len(spatial_domain))

# register eigenfunctions
re.register_base("eig_funcs", eig_funcs, overwrite=True)
re.register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True)
re.register_base("eig_funcs_t", eig_funcs_t, overwrite=True)
re.register_base("fem_funcs", fem_funcs, overwrite=True)

# original () and target (_t) field variable
fem_field_variable = ph.FieldVariable("fem_funcs", location=l)
field_variable = ph.FieldVariable("eig_funcs", location=l)
d_field_variable = ph.SpatialDerivedFieldVariable("eig_funcs", 1, location=l)
field_variable_t = ph.FieldVariable("eig_funcs_t", weight_label="eig_funcs", location=l)
d_field_variable_t = ph.SpatialDerivedFieldVariable("eig_funcs_t", 1, weight_label="eig_funcs", location=l)


def transform_i(z):
    """
    intermediate (_i) transformation at z=l
    """
    return np.exp(a1 / 2 / a2 * z)  # x_i  = x   * transform_i


def transform_ti(z):
    """
Ejemplo n.º 9
0
    def test_fem(self):

        # system/simulation parameters
        actuation_type = 'robin'
        bound_cond_type = 'robin'

        self.l = 1.
        spatial_disc = 30
        self.dz = sim.Domain(bounds=(0, self.l), num=spatial_disc)

        self.T = 1.
        temporal_disc = 1e2
        self.dt = sim.Domain(bounds=(0, self.T), num=temporal_disc)
        self.n = 12

        # original system parameters
        a2 = 1.5
        a1 = 2.5
        a0 = 28
        alpha = -2
        beta = -3
        self.param = [a2, a1, a0, alpha, beta]
        adjoint_param = ef.get_adjoint_rad_evp_param(self.param)

        # target system parameters (controller parameters)
        a1_t = -5
        a0_t = -25
        alpha_t = 3
        beta_t = 2
        self.param_t = [a2, a1_t, a0_t, alpha_t, beta_t]

        # actuation_type by b which is close to b_desired on a k times subdivided spatial domain
        b_desired = self.l / 2
        k = 51  # = k1 + k2
        k1, k2, self.b = ut.split_domain(k, b_desired, self.l,
                                         mode='coprime')[0:3]
        M = np.linalg.inv(
            ut.get_inn_domain_transformation_matrix(k1, k2, mode="2n"))

        # original intermediate ("_i") and traget intermediate ("_ti") system parameters
        _, _, a0_i, self.alpha_i, self.beta_i = ef.transform2intermediate(
            self.param)
        self.param_i = a2, 0, a0_i, self.alpha_i, self.beta_i
        _, _, a0_ti, self.alpha_ti, self.beta_ti = ef.transform2intermediate(
            self.param_t)
        self.param_ti = a2, 0, a0_ti, self.alpha_ti, self.beta_ti

        # create (not normalized) eigenfunctions
        eig_freq, self.eig_val = ef.compute_rad_robin_eigenfrequencies(
            self.param, self.l, self.n)
        init_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, self.param, self.dz.bounds)
            for om in eig_freq
        ])
        init_adjoint_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, adjoint_param, self.dz.bounds)
            for om in eig_freq
        ])

        # normalize eigenfunctions and adjoint eigenfunctions
        adjoint_and_eig_funcs = [
            cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i])
            for i in range(self.n)
        ]
        eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs])
        self.adjoint_eig_funcs = np.array(
            [f_tuple[1] for f_tuple in adjoint_and_eig_funcs])

        # eigenfunctions of the in-domain intermediate (_id) and the intermediate (_i) system
        eig_freq_i, eig_val_i = ef.compute_rad_robin_eigenfrequencies(
            self.param_i, self.l, self.n)
        self.assertTrue(all(np.isclose(eig_val_i, self.eig_val)))
        eig_funcs_id = np.array([
            ef.SecondOrderRobinEigenfunction(eig_freq_i[i], self.param_i,
                                             self.dz.bounds, eig_funcs[i](0))
            for i in range(self.n)
        ])
        eig_funcs_i = np.array([
            ef.SecondOrderRobinEigenfunction(
                eig_freq_i[i], self.param_i, self.dz.bounds, eig_funcs[i](0) *
                eig_funcs_id[i](self.l) / eig_funcs_id[i](self.b))
            for i in range(self.n)
        ])

        # eigenfunctions from target system ("_ti")
        eig_freq_ti = np.sqrt((a0_ti - self.eig_val) / a2)
        eig_funcs_ti = np.array([
            ef.SecondOrderRobinEigenfunction(eig_freq_ti[i], self.param_ti,
                                             self.dz.bounds, eig_funcs_i[i](0))
            for i in range(self.n)
        ])

        # create testfunctions
        nodes, self.fem_funcs = sf.cure_interval(sf.LagrangeFirstOrder,
                                                 self.dz.bounds,
                                                 node_count=self.n)

        # register eigenfunctions
        # register_functions("eig_funcs", eig_funcs, overwrite=True)
        register_base("adjoint_eig_funcs",
                      self.adjoint_eig_funcs,
                      overwrite=True)
        register_base("eig_funcs", eig_funcs, overwrite=True)
        register_base("eig_funcs_i", eig_funcs_i, overwrite=True)
        register_base("eig_funcs_ti", eig_funcs_ti, overwrite=True)
        register_base("fem_funcs", self.fem_funcs, overwrite=True)

        # init trajectory
        self.traj = tr.RadTrajectory(self.l, self.T, self.param_ti,
                                     bound_cond_type, actuation_type)

        # original () and target (_t) field variable
        fem_field_variable = ph.FieldVariable("fem_funcs", location=self.l)
        field_variable_i = ph.FieldVariable("eig_funcs_i",
                                            weight_label="eig_funcs",
                                            location=self.l)
        d_field_variable_i = ph.SpatialDerivedFieldVariable(
            "eig_funcs_i", 1, weight_label="eig_funcs", location=self.l)
        field_variable_ti = ph.FieldVariable("eig_funcs_ti",
                                             weight_label="eig_funcs",
                                             location=self.l)
        d_field_variable_ti = ph.SpatialDerivedFieldVariable(
            "eig_funcs_ti", 1, weight_label="eig_funcs", location=self.l)

        # intermediate (_i) and target intermediate (_ti) field variable (list of scalar terms = sum of scalar terms)
        self.x_fem_i_at_l = [ph.ScalarTerm(fem_field_variable)]
        self.x_i_at_l = [ph.ScalarTerm(field_variable_i)]
        self.xd_i_at_l = [ph.ScalarTerm(d_field_variable_i)]
        self.x_ti_at_l = [ph.ScalarTerm(field_variable_ti)]
        self.xd_ti_at_l = [ph.ScalarTerm(d_field_variable_ti)]

        # shift transformation
        shifted_fem_funcs_i = np.array([
            ef.FiniteTransformFunction(
                func,
                M,
                self.b,
                self.l,
                scale_func=lambda z: np.exp(a1 / 2 / a2 * z))
            for func in self.fem_funcs
        ])
        shifted_eig_funcs_id = np.array([
            ef.FiniteTransformFunction(func, M, self.b, self.l)
            for func in eig_funcs_id
        ])
        register_base("sh_fem_funcs_i", shifted_fem_funcs_i, overwrite=True)
        register_base("sh_eig_funcs_id", shifted_eig_funcs_id, overwrite=True)
        sh_fem_field_variable_i = ph.FieldVariable("sh_fem_funcs_i",
                                                   weight_label="fem_funcs",
                                                   location=self.l)
        sh_field_variable_id = ph.FieldVariable("sh_eig_funcs_id",
                                                weight_label="eig_funcs",
                                                location=self.l)
        self.sh_x_fem_i_at_l = [
            ph.ScalarTerm(sh_fem_field_variable_i),
            ph.ScalarTerm(field_variable_i),
            ph.ScalarTerm(sh_field_variable_id, -1)
        ]

        # discontinuous operator (Kx)(t) = int_kernel_zz(l)*x(l,t)
        self.int_kernel_zz = lambda z: self.alpha_ti - self.alpha_i + (
            a0_i - a0_ti) / 2 / a2 * z

        a2, a1, _, _, _ = self.param
        controller = ut.get_parabolic_robin_backstepping_controller(
            state=self.sh_x_fem_i_at_l,
            approx_state=self.x_i_at_l,
            d_approx_state=self.xd_i_at_l,
            approx_target_state=self.x_ti_at_l,
            d_approx_target_state=self.xd_ti_at_l,
            integral_kernel_zz=self.int_kernel_zz(self.l),
            original_beta=self.beta_i,
            target_beta=self.beta_ti,
            trajectory=self.traj,
            scale=np.exp(-a1 / 2 / a2 * self.b))

        # determine (A,B) with modal-transfomation
        rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs",
                                                   controller, self.param,
                                                   self.dz.bounds, self.b)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # simulate
        t, q = sim.simulate_state_space(ss_weak, np.zeros(
            (len(self.fem_funcs))), self.dt)

        # weights of the intermediate system
        mat = cr.calculate_base_transformation_matrix(self.fem_funcs,
                                                      eig_funcs)
        q_i = np.zeros((q.shape[0], len(eig_funcs_i)))
        for i in range(q.shape[0]):
            q_i[i, :] = np.dot(q[i, :], np.transpose(mat))

        eval_i = sim.evaluate_approximation("eig_funcs_i", q_i, t, self.dz)
        x_0t = eval_i.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(self.T, 1)
        x_0t_desired = np.interp(t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-2)

        # display results
        if show_plots:
            eval_d = sim.evaluate_approximation("fem_funcs", q, t, self.dz)
            win1 = vis.PgSurfacePlot(eval_i)
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Ejemplo n.º 10
0
    def test_it(self):
        # system/simulation parameters
        actuation_type = 'robin'
        bound_cond_type = 'robin'

        self.l = 1.
        spatial_disc = 10
        self.dz = sim.Domain(bounds=(0, self.l), num=spatial_disc)

        self.T = 1.
        temporal_disc = 1e2
        self.dt = sim.Domain(bounds=(0, self.T), num=temporal_disc)

        self.n = 10

        # original system parameters
        a2 = 1.5
        a1_z = cr.Function(lambda z: 1, derivative_handles=[lambda z: 0])
        a0_z = lambda z: 3
        alpha = -2
        beta = -3
        self.param = [a2, a1_z, a0_z, alpha, beta]

        # target system parameters (controller parameters)
        a1_t = -5
        a0_t = -25
        alpha_t = 3
        beta_t = 2
        self.param_t = [a2, a1_t, a0_t, alpha_t, beta_t]
        adjoint_param_t = ef.get_adjoint_rad_evp_param(self.param_t)

        # original intermediate ("_i") and traget intermediate ("_ti") system parameters
        _, _, a0_i, alpha_i, beta_i = ef.transform2intermediate(self.param,
                                                                d_end=self.l)
        self.param_i = a2, 0, a0_i, alpha_i, beta_i
        _, _, a0_ti, alpha_ti, beta_ti = ef.transform2intermediate(
            self.param_t)
        self.param_ti = a2, 0, a0_ti, alpha_ti, beta_ti

        # create (not normalized) target (_t) eigenfunctions
        eig_freq_t, self.eig_val_t = ef.compute_rad_robin_eigenfrequencies(
            self.param_t, self.l, self.n)
        init_eig_funcs_t = np.array([
            ef.SecondOrderRobinEigenfunction(om, self.param_t, self.dz.bounds)
            for om in eig_freq_t
        ])
        init_adjoint_eig_funcs_t = np.array([
            ef.SecondOrderRobinEigenfunction(om, adjoint_param_t,
                                             self.dz.bounds)
            for om in eig_freq_t
        ])

        # normalize eigenfunctions and adjoint eigenfunctions
        adjoint_and_eig_funcs_t = [
            cr.normalize_function(init_eig_funcs_t[i],
                                  init_adjoint_eig_funcs_t[i])
            for i in range(self.n)
        ]
        eig_funcs_t = np.array(
            [f_tuple[0] for f_tuple in adjoint_and_eig_funcs_t])
        self.adjoint_eig_funcs_t = np.array(
            [f_tuple[1] for f_tuple in adjoint_and_eig_funcs_t])

        # # transformed original eigenfunctions
        self.eig_funcs = np.array([
            ef.TransformedSecondOrderEigenfunction(
                self.eig_val_t[i],
                [eig_funcs_t[i](0), alpha * eig_funcs_t[i](0), 0, 0],
                [a2, a1_z, a0_z], np.linspace(0, self.l, 1e4))
            for i in range(self.n)
        ])

        # create testfunctions
        nodes, self.fem_funcs = sf.cure_interval(sf.LagrangeFirstOrder,
                                                 self.dz.bounds,
                                                 node_count=self.n)

        # register functions
        register_base("eig_funcs_t", eig_funcs_t, overwrite=True)
        register_base("adjoint_eig_funcs_t",
                      self.adjoint_eig_funcs_t,
                      overwrite=True)
        register_base("eig_funcs", self.eig_funcs, overwrite=True)
        register_base("fem_funcs", self.fem_funcs, overwrite=True)

        # init trajectory
        self.traj = tr.RadTrajectory(self.l, self.T, self.param_ti,
                                     bound_cond_type, actuation_type)

        # original () and target (_t) field variable
        fem_field_variable = ph.FieldVariable("fem_funcs", location=self.l)
        field_variable_t = ph.FieldVariable("eig_funcs_t",
                                            weight_label="eig_funcs",
                                            location=self.l)
        d_field_variable_t = ph.SpatialDerivedFieldVariable(
            "eig_funcs_t", 1, weight_label="eig_funcs", location=self.l)
        field_variable = ph.FieldVariable("eig_funcs", location=self.l)
        d_field_variable = ph.SpatialDerivedFieldVariable("eig_funcs",
                                                          1,
                                                          location=self.l)
        # intermediate (_i) and target intermediate (_ti) transformations by z=l

        #  x_i  = x   * transform_i_at_l
        self.transform_i_at_l = np.exp(
            integrate.quad(lambda z: a1_z(z) / 2 / a2, 0, self.l)[0])

        # x  = x_i   * inv_transform_i_at_l
        self.inv_transform_i_at_l = np.exp(
            -integrate.quad(lambda z: a1_z(z) / 2 / a2, 0, self.l)[0])

        # x_ti = x_t * transform_ti_at_l
        self.transform_ti_at_l = np.exp(a1_t / 2 / a2 * self.l)

        # intermediate (_i) and target intermediate (_ti) field variable (list of scalar terms = sum of scalar terms)
        self.x_fem_i_at_l = [
            ph.ScalarTerm(fem_field_variable, self.transform_i_at_l)
        ]
        self.x_i_at_l = [ph.ScalarTerm(field_variable, self.transform_i_at_l)]
        self.xd_i_at_l = [
            ph.ScalarTerm(d_field_variable, self.transform_i_at_l),
            ph.ScalarTerm(field_variable,
                          self.transform_i_at_l * a1_z(self.l) / 2 / a2)
        ]
        self.x_ti_at_l = [
            ph.ScalarTerm(field_variable_t, self.transform_ti_at_l)
        ]
        self.xd_ti_at_l = [
            ph.ScalarTerm(d_field_variable_t, self.transform_ti_at_l),
            ph.ScalarTerm(field_variable_t,
                          self.transform_ti_at_l * a1_t / 2 / a2)
        ]

        # discontinuous operator (Kx)(t) = int_kernel_zz(l)*x(l,t)
        self.int_kernel_zz = alpha_ti - alpha_i + integrate.quad(
            lambda z: (a0_i(z) - a0_ti) / 2 / a2, 0, self.l)[0]

        controller = ut.get_parabolic_robin_backstepping_controller(
            state=self.x_fem_i_at_l,
            approx_state=self.x_i_at_l,
            d_approx_state=self.xd_i_at_l,
            approx_target_state=self.x_ti_at_l,
            d_approx_target_state=self.xd_ti_at_l,
            integral_kernel_zz=self.int_kernel_zz,
            original_beta=beta_i,
            target_beta=beta_ti,
            trajectory=self.traj,
            scale=self.inv_transform_i_at_l)

        rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs",
                                                   controller, self.param,
                                                   self.dz.bounds)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # simulate
        t, q = sim.simulate_state_space(ss_weak, np.zeros(
            (len(self.fem_funcs))), self.dt)
        eval_d = sim.evaluate_approximation("fem_funcs", q, t, self.dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(self.T, 1)
        x_0t_desired = np.interp(t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-4)

        # display results
        if show_plots:
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Ejemplo n.º 11
0
    def setUp(self):
        # original system parameters
        a2 = 1.5
        a1 = 2.5
        a0 = 28
        alpha = -2
        beta = -3
        self.param = [a2, a1, a0, alpha, beta]
        adjoint_param = ef.get_adjoint_rad_evp_param(self.param)

        # target system parameters (controller parameters)
        a1_t = -5
        a0_t = -25
        alpha_t = 3
        beta_t = 2
        # a1_t = a1; a0_t = a0; alpha_t = alpha; beta_t = beta
        self.param_t = [a2, a1_t, a0_t, alpha_t, beta_t]

        # original intermediate ("_i") and target intermediate ("_ti") system parameters
        _, _, a0_i, self.alpha_i, self.beta_i = ef.transform2intermediate(
            self.param)
        self.param_i = a2, 0, a0_i, self.alpha_i, self.beta_i
        _, _, a0_ti, self.alpha_ti, self.beta_ti = ef.transform2intermediate(
            self.param_t)
        self.param_ti = a2, 0, a0_ti, self.alpha_ti, self.beta_ti

        # system/simulation parameters
        actuation_type = 'robin'
        bound_cond_type = 'robin'
        self.l = 1.
        spatial_disc = 10
        self.dz = sim.Domain(bounds=(0, self.l), num=spatial_disc)

        self.T = 1.
        temporal_disc = 1e2
        self.dt = sim.Domain(bounds=(0, self.T), num=temporal_disc)
        self.n = 10

        # create (not normalized) eigenfunctions
        eig_freq, self.eig_val = ef.compute_rad_robin_eigenfrequencies(
            self.param, self.l, self.n)
        init_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, self.param, self.dz.bounds)
            for om in eig_freq
        ])
        init_adjoint_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, adjoint_param, self.dz.bounds)
            for om in eig_freq
        ])

        # normalize eigenfunctions and adjoint eigenfunctions
        adjoint_and_eig_funcs = [
            cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i])
            for i in range(self.n)
        ]
        eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs])
        self.adjoint_eig_funcs = np.array(
            [f_tuple[1] for f_tuple in adjoint_and_eig_funcs])

        # eigenfunctions from target system ("_t")
        eig_freq_t = np.sqrt(-a1_t**2 / 4 / a2**2 + (a0_t - self.eig_val) / a2)
        eig_funcs_t = np.array([
            ef.SecondOrderRobinEigenfunction(eig_freq_t[i], self.param_t,
                                             self.dz.bounds).scale(
                                                 eig_funcs[i](0))
            for i in range(self.n)
        ])

        # create testfunctions
        nodes, self.fem_funcs = sf.cure_interval(sf.LagrangeFirstOrder,
                                                 self.dz.bounds,
                                                 node_count=self.n)

        # register eigenfunctions
        register_base("eig_funcs", eig_funcs, overwrite=True)
        register_base("adjoint_eig_funcs",
                      self.adjoint_eig_funcs,
                      overwrite=True)
        register_base("eig_funcs_t", eig_funcs_t, overwrite=True)
        register_base("fem_funcs", self.fem_funcs, overwrite=True)

        # init trajectory
        self.traj = tr.RadTrajectory(self.l, self.T, self.param_ti,
                                     bound_cond_type, actuation_type)

        # original () and target (_t) field variable
        fem_field_variable = ph.FieldVariable("fem_funcs", location=self.l)
        field_variable = ph.FieldVariable("eig_funcs", location=self.l)
        d_field_variable = ph.SpatialDerivedFieldVariable("eig_funcs",
                                                          1,
                                                          location=self.l)
        field_variable_t = ph.FieldVariable("eig_funcs_t",
                                            weight_label="eig_funcs",
                                            location=self.l)
        d_field_variable_t = ph.SpatialDerivedFieldVariable(
            "eig_funcs_t", 1, weight_label="eig_funcs", location=self.l)

        # intermediate (_i) and target intermediate (_ti) transformations by z=l
        self.transform_i = lambda z: np.exp(a1 / 2 / a2 * z
                                            )  # x_i  = x   * transform_i
        self.transform_ti = lambda z: np.exp(a1_t / 2 / a2 * z
                                             )  # x_ti = x_t * transform_ti

        # intermediate (_i) and target intermediate (_ti) field variable (list of scalar terms = sum of scalar terms)
        self.x_fem_i_at_l = [
            ph.ScalarTerm(fem_field_variable, self.transform_i(self.l))
        ]
        self.x_i_at_l = [
            ph.ScalarTerm(field_variable, self.transform_i(self.l))
        ]
        self.xd_i_at_l = [
            ph.ScalarTerm(d_field_variable, self.transform_i(self.l)),
            ph.ScalarTerm(field_variable,
                          self.transform_i(self.l) * a1 / 2 / a2)
        ]
        self.x_ti_at_l = [
            ph.ScalarTerm(field_variable_t, self.transform_ti(self.l))
        ]
        self.xd_ti_at_l = [
            ph.ScalarTerm(d_field_variable_t, self.transform_ti(self.l)),
            ph.ScalarTerm(field_variable_t,
                          self.transform_ti(self.l) * a1_t / 2 / a2)
        ]

        # discontinuous operator (Kx)(t) = int_kernel_zz(l)*x(l,t)
        self.int_kernel_zz = lambda z: self.alpha_ti - self.alpha_i + (
            a0_i - a0_ti) / 2 / a2 * z
Ejemplo n.º 12
0
    def test_it(self):
        # original system parameters
        a2 = 1.5
        a1 = 2.5
        a0 = 28
        alpha = -2
        beta = -3
        param = [a2, a1, a0, alpha, beta]
        adjoint_param = ef.get_adjoint_rad_evp_param(param)

        # target system parameters (controller parameters)
        a1_t = -5
        a0_t = -25
        alpha_t = 3
        beta_t = 2
        # a1_t = a1; a0_t = a0; alpha_t = alpha; beta_t = beta
        param_t = [a2, a1_t, a0_t, alpha_t, beta_t]

        # original intermediate ("_i") and traget intermediate ("_ti") system parameters
        _, _, a0_i, alpha_i, beta_i = ef.transform2intermediate(param)
        _, _, a0_ti, alpha_ti, beta_ti = ef.transform2intermediate(param_t)

        # system/simulation parameters
        actuation_type = 'robin'
        bound_cond_type = 'robin'
        self.l = 1.
        spatial_disc = 10
        dz = sim.Domain(bounds=(0, self.l), num=spatial_disc)

        T = 1.
        temporal_disc = 1e2
        dt = sim.Domain(bounds=(0, T), num=temporal_disc)
        n = 10

        # create (not normalized) eigenfunctions
        eig_freq, eig_val = ef.compute_rad_robin_eigenfrequencies(
            param, self.l, n)
        init_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, param, dz.bounds)
            for om in eig_freq
        ])
        init_adjoint_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, adjoint_param, dz.bounds)
            for om in eig_freq
        ])

        # normalize eigenfunctions and adjoint eigenfunctions
        adjoint_and_eig_funcs = [
            cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i])
            for i in range(n)
        ]
        eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs])
        adjoint_eig_funcs = np.array(
            [f_tuple[1] for f_tuple in adjoint_and_eig_funcs])

        # eigenfunctions from target system ("_t")
        eig_freq_t = np.sqrt(-a1_t**2 / 4 / a2**2 + (a0_t - eig_val) / a2)
        eig_funcs_t = np.array([
            ef.SecondOrderRobinEigenfunction(eig_freq_t[i], param_t,
                                             dz.bounds).scale(eig_funcs[i](0))
            for i in range(n)
        ])

        # register eigenfunctions
        register_base("eig_funcs", eig_funcs, overwrite=True)
        register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True)
        register_base("eig_funcs_t", eig_funcs_t, overwrite=True)

        # derive initial field variable x(z,0) and weights
        start_state = cr.Function(lambda z: 0., domain=(0, self.l))
        initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs)

        # controller initialization
        x_at_l = ph.FieldVariable("eig_funcs", location=self.l)
        xd_at_l = ph.SpatialDerivedFieldVariable("eig_funcs",
                                                 1,
                                                 location=self.l)
        x_t_at_l = ph.FieldVariable("eig_funcs_t",
                                    weight_label="eig_funcs",
                                    location=self.l)
        xd_t_at_l = ph.SpatialDerivedFieldVariable("eig_funcs_t",
                                                   1,
                                                   weight_label="eig_funcs",
                                                   location=self.l)
        combined_transform = lambda z: np.exp((a1_t - a1) / 2 / a2 * z)
        int_kernel_zz = lambda z: alpha_ti - alpha_i + (a0_i - a0_ti
                                                        ) / 2 / a2 * z
        controller = ct.Controller(
            ct.ControlLaw([
                ph.ScalarTerm(x_at_l,
                              (beta_i - beta_ti - int_kernel_zz(self.l))),
                ph.ScalarTerm(x_t_at_l, -beta_ti * combined_transform(self.l)),
                ph.ScalarTerm(x_at_l, beta_ti),
                ph.ScalarTerm(xd_t_at_l, -combined_transform(self.l)),
                ph.ScalarTerm(x_t_at_l,
                              -a1_t / 2 / a2 * combined_transform(self.l)),
                ph.ScalarTerm(xd_at_l, 1),
                ph.ScalarTerm(x_at_l, a1 / 2 / a2 + int_kernel_zz(self.l))
            ]))

        # init trajectory
        traj = tr.RadTrajectory(self.l, T, param_t, bound_cond_type,
                                actuation_type)
        traj.scale = combined_transform(self.l)

        # input with feedback
        control_law = sim.SimulationInputSum([traj, controller])
        # control_law = sim.simInputSum([traj])

        # determine (A,B) with modal-transformation
        A = np.diag(np.real(eig_val))
        B = a2 * np.array(
            [adjoint_eig_funcs[i](self.l) for i in range(len(eig_freq))])
        ss_modal = sim.StateSpace("eig_funcs", A, B, input_handle=control_law)

        # simulate
        t, q = sim.simulate_state_space(ss_modal, initial_weights, dt)

        eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(T, 1)
        x_0t_desired = np.interp(t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-4)

        # display results
        if show_plots:
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Ejemplo n.º 13
0
    def test_it(self):
        # original system parameters
        a2 = 1
        a1 = 0  # attention: only a2 = 1., a1 =0 supported in this test case
        a0 = 0
        param = [a2, a1, a0, None, None]

        # target system parameters (controller parameters)
        a1_t = 0
        a0_t = 0  # attention: only a2 = 1., a1 =0 and a0 =0 supported in this test case
        param_t = [a2, a1_t, a0_t, None, None]

        # system/simulation parameters
        actuation_type = 'dirichlet'
        bound_cond_type = 'dirichlet'

        l = 1.
        spatial_disc = 10
        dz = sim.Domain(bounds=(0, l), num=spatial_disc)

        T = 1.
        temporal_disc = 1e2
        dt = sim.Domain(bounds=(0, T), num=temporal_disc)

        n = 10

        # eigenvalues /-functions original system
        eig_freq = np.array([(i + 1) * np.pi / l for i in range(n)])
        eig_values = a0 - a2 * eig_freq**2 - a1**2 / 4. / a2
        norm_fac = np.ones(eig_freq.shape) * np.sqrt(2)
        eig_funcs = np.asarray([
            ef.SecondOrderDirichletEigenfunction(eig_freq[i], param, dz.bounds,
                                                 norm_fac[i]) for i in range(n)
        ])
        register_base("eig_funcs", eig_funcs, overwrite=True)

        # eigenfunctions target system
        eig_freq_t = np.sqrt(-eig_values.astype(complex))
        norm_fac_t = norm_fac * eig_freq / eig_freq_t
        eig_funcs_t = np.asarray([
            ef.SecondOrderDirichletEigenfunction(eig_freq_t[i], param_t,
                                                 dz.bounds, norm_fac_t[i])
            for i in range(n)
        ])
        register_base("eig_funcs_t", eig_funcs_t, overwrite=True)

        # derive initial field variable x(z,0) and weights
        start_state = cr.Function(lambda z: 0., domain=(0, l))
        initial_weights = cr.project_on_base(start_state, eig_funcs)

        # init trajectory / input of target system
        traj = tr.RadTrajectory(l, T, param_t, bound_cond_type, actuation_type)

        # init controller
        x_at_1 = ph.FieldVariable("eig_funcs", location=1)
        xt_at_1 = ph.FieldVariable("eig_funcs_t",
                                   weight_label="eig_funcs",
                                   location=1)
        controller = ct.Controller(
            ct.ControlLaw(
                [ph.ScalarTerm(x_at_1, 1),
                 ph.ScalarTerm(xt_at_1, -1)]))

        # input with feedback
        control_law = sim.SimulationInputSum([traj, controller])

        # determine (A,B) with modal-transfomation
        A = np.diag(eig_values)
        B = -a2 * np.array([eig_funcs[i].derive()(l) for i in range(n)])
        ss = sim.StateSpace("eig_funcs", A, B, input_handle=control_law)

        # simulate
        t, q = sim.simulate_state_space(ss, initial_weights, dt)

        eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(T, 1)
        x_0t_desired = np.interp(t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired)**2), 0.5)

        # display results
        if show_plots:
            eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz)
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Ejemplo n.º 14
0
    def test_modal(self):
        order = 8

        def char_eq(w):
            return w * (np.sin(w) + self.params.m * w * np.cos(w))

        def phi_k_factory(freq, derivative_order=0):
            def eig_func(z):
                return np.cos(
                    freq * z) - self.params.m * freq * np.sin(freq * z)

            def eig_func_dz(z):
                return -freq * (np.sin(freq * z) +
                                self.params.m * freq * np.cos(freq * z))

            def eig_func_ddz(z):
                return freq**2 * (-np.cos(freq * z) +
                                  self.params.m * freq * np.sin(freq * z))

            if derivative_order == 0:
                return eig_func
            elif derivative_order == 1:
                return eig_func_dz
            elif derivative_order == 2:
                return eig_func_ddz
            else:
                raise ValueError

        # create eigenfunctions
        eig_frequencies = ut.find_roots(char_eq,
                                        n_roots=order,
                                        grid=np.arange(0, 1e3, 2),
                                        rtol=-2)
        print("eigenfrequencies:")
        print(eig_frequencies)

        # create eigen function vectors
        class SWMFunctionVector(cr.ComposedFunctionVector):
            """
            String With Mass Function Vector, necessary due to manipulated scalar product
            """
            @property
            def func(self):
                return self.members["funcs"][0]

            @property
            def scalar(self):
                return self.members["scalars"][0]

        eig_vectors = []
        for n in range(order):
            eig_vectors.append(
                SWMFunctionVector(
                    cr.Function(phi_k_factory(eig_frequencies[n]),
                                derivative_handles=[
                                    phi_k_factory(eig_frequencies[n],
                                                  der_order)
                                    for der_order in range(1, 3)
                                ],
                                domain=self.dz.bounds,
                                nonzero=self.dz.bounds),
                    phi_k_factory(eig_frequencies[n])(0)))

        # normalize eigen vectors
        norm_eig_vectors = [cr.normalize_function(vec) for vec in eig_vectors]
        norm_eig_funcs = np.array([vec.func for vec in norm_eig_vectors])
        register_base("norm_eig_funcs", norm_eig_funcs, overwrite=True)

        norm_eig_funcs[0](1)

        # debug print eigenfunctions
        if 0:
            func_vals = []
            for vec in eig_vectors:
                func_vals.append(np.vectorize(vec.func)(self.dz))

            norm_func_vals = []
            for func in norm_eig_funcs:
                norm_func_vals.append(np.vectorize(func)(self.dz))

            clrs = ["r", "g", "b", "c", "m", "y", "k", "w"]
            for n in range(1, order + 1, len(clrs)):
                pw_phin_k = pg.plot(title="phin_k for k in [{0}, {1}]".format(
                    n, min(n + len(clrs), order)))
                for k in range(len(clrs)):
                    if k + n > order:
                        break
                    pw_phin_k.plot(x=np.array(self.dz),
                                   y=norm_func_vals[n + k - 1],
                                   pen=clrs[k])

            app.exec_()

        # create terms of weak formulation
        terms = [
            ph.IntegralTerm(ph.Product(
                ph.FieldVariable("norm_eig_funcs", order=(2, 0)),
                ph.TestFunction("norm_eig_funcs")),
                            self.dz.bounds,
                            scale=-1),
            ph.ScalarTerm(ph.Product(
                ph.FieldVariable("norm_eig_funcs", order=(2, 0), location=0),
                ph.TestFunction("norm_eig_funcs", location=0)),
                          scale=-1),
            ph.ScalarTerm(
                ph.Product(ph.Input(self.u),
                           ph.TestFunction("norm_eig_funcs", location=1))),
            ph.ScalarTerm(ph.Product(
                ph.FieldVariable("norm_eig_funcs", location=1),
                ph.TestFunction("norm_eig_funcs", order=1, location=1)),
                          scale=-1),
            ph.ScalarTerm(
                ph.Product(
                    ph.FieldVariable("norm_eig_funcs", location=0),
                    ph.TestFunction("norm_eig_funcs", order=1, location=0))),
            ph.IntegralTerm(
                ph.Product(ph.FieldVariable("norm_eig_funcs"),
                           ph.TestFunction("norm_eig_funcs", order=2)),
                self.dz.bounds)
        ]
        modal_pde = sim.WeakFormulation(terms, name="swm_lib-modal")
        eval_data = sim.simulate_system(modal_pde,
                                        self.ic,
                                        self.dt,
                                        self.dz,
                                        der_orders=(2, 0))

        # display results
        if show_plots:
            win = vis.PgAnimatedPlot(eval_data[0:2],
                                     title="modal approx and derivative")
            win2 = vis.PgSurfacePlot(eval_data[0])
            app.exec_()

        # test for correct transition
        self.assertTrue(
            np.isclose(eval_data[0].output_data[-1, 0], self.y_end, atol=1e-3))
Ejemplo n.º 15
0
    def setUp(self):
        # scalars
        self.scalars = ph.Scalars(np.vstack(list(range(3))))

        # inputs
        self.u = np.sin
        self.input = ph.Input(self.u)
        self.input_squared = ph.Input(self.u, exponent=2)

        nodes, self.ini_funcs = sf.cure_interval(sf.LagrangeFirstOrder, (0, 1),
                                                 node_count=3)

        # TestFunctions
        register_base("ini_funcs", self.ini_funcs, overwrite=True)
        self.phi = ph.TestFunction("ini_funcs")
        self.phi_at0 = ph.TestFunction("ini_funcs", location=0)
        self.phi_at1 = ph.TestFunction("ini_funcs", location=1)
        self.dphi = ph.TestFunction("ini_funcs", order=1)
        self.dphi_at1 = ph.TestFunction("ini_funcs", order=1, location=1)

        # FieldVars
        self.field_var = ph.FieldVariable("ini_funcs")
        self.field_var_squared = ph.FieldVariable("ini_funcs", exponent=2)

        self.odd_weight_field_var = ph.FieldVariable(
            "ini_funcs", weight_label="special_weights")
        self.field_var_at1 = ph.FieldVariable("ini_funcs", location=1)
        self.field_var_at1_squared = ph.FieldVariable("ini_funcs",
                                                      location=1,
                                                      exponent=2)

        self.field_var_dz = ph.SpatialDerivedFieldVariable("ini_funcs", 1)
        self.field_var_dz_at1 = ph.SpatialDerivedFieldVariable("ini_funcs",
                                                               1,
                                                               location=1)

        self.field_var_ddt = ph.TemporalDerivedFieldVariable("ini_funcs", 2)
        self.field_var_ddt_at0 = ph.TemporalDerivedFieldVariable("ini_funcs",
                                                                 2,
                                                                 location=0)
        self.field_var_ddt_at1 = ph.TemporalDerivedFieldVariable("ini_funcs",
                                                                 2,
                                                                 location=1)

        # create all possible kinds of input variables
        self.input_term1 = ph.ScalarTerm(ph.Product(self.phi_at1, self.input))
        self.input_term1_swapped = ph.ScalarTerm(
            ph.Product(self.input, self.phi_at1))
        self.input_term1_squared = ph.ScalarTerm(
            ph.Product(self.input_squared, self.phi_at1))

        self.input_term2 = ph.ScalarTerm(ph.Product(self.dphi_at1, self.input))
        self.func_term = ph.ScalarTerm(self.phi_at1)

        # same goes for field variables
        self.field_term_at1 = ph.ScalarTerm(self.field_var_at1)
        self.field_term_at1_squared = ph.ScalarTerm(self.field_var_at1_squared)
        self.field_term_dz_at1 = ph.ScalarTerm(self.field_var_dz_at1)
        self.field_term_ddt_at1 = ph.ScalarTerm(self.field_var_ddt_at1)

        self.field_int = ph.IntegralTerm(self.field_var, (0, 1))
        self.field_squared_int = ph.IntegralTerm(self.field_var_squared,
                                                 (0, 1))
        self.field_dz_int = ph.IntegralTerm(self.field_var_dz, (0, 1))
        self.field_ddt_int = ph.IntegralTerm(self.field_var_ddt, (0, 1))

        self.prod_term_fs_at1 = ph.ScalarTerm(
            ph.Product(self.field_var_at1, self.scalars))
        self.prod_int_fs = ph.IntegralTerm(
            ph.Product(self.field_var, self.scalars), (0, 1))
        self.prod_int_f_f = ph.IntegralTerm(
            ph.Product(self.field_var, self.phi), (0, 1))
        self.prod_int_f_squared_f = ph.IntegralTerm(
            ph.Product(self.field_var_squared, self.phi), (0, 1))
        self.prod_int_f_f_swapped = ph.IntegralTerm(
            ph.Product(self.phi, self.field_var), (0, 1))

        self.prod_int_f_at1_f = ph.IntegralTerm(
            ph.Product(self.field_var_at1, self.phi), (0, 1))
        self.prod_int_f_at1_squared_f = ph.IntegralTerm(
            ph.Product(self.field_var_at1_squared, self.phi), (0, 1))

        self.prod_int_f_f_at1 = ph.IntegralTerm(
            ph.Product(self.field_var, self.phi_at1), (0, 1))
        self.prod_int_f_squared_f_at1 = ph.IntegralTerm(
            ph.Product(self.field_var_squared, self.phi_at1), (0, 1))

        self.prod_term_f_at1_f_at1 = ph.ScalarTerm(
            ph.Product(self.field_var_at1, self.phi_at1))
        self.prod_term_f_at1_squared_f_at1 = ph.ScalarTerm(
            ph.Product(self.field_var_at1_squared, self.phi_at1))

        self.prod_int_fddt_f = ph.IntegralTerm(
            ph.Product(self.field_var_ddt, self.phi), (0, 1))
        self.prod_term_fddt_at0_f_at0 = ph.ScalarTerm(
            ph.Product(self.field_var_ddt_at0, self.phi_at0))

        self.prod_term_f_at1_dphi_at1 = ph.ScalarTerm(
            ph.Product(self.field_var_at1, self.dphi_at1))

        self.temp_int = ph.IntegralTerm(
            ph.Product(self.field_var_ddt, self.phi), (0, 1))
        self.spat_int = ph.IntegralTerm(
            ph.Product(self.field_var_dz, self.dphi), (0, 1))
        self.spat_int_asymmetric = ph.IntegralTerm(
            ph.Product(self.field_var_dz, self.phi), (0, 1))

        self.alternating_weights_term = ph.IntegralTerm(
            self.odd_weight_field_var, (0, 1))