def test_kmeans_random(): data = np.random.randn( 1000, 3 ) data[500:] += np.array([ 10,10,10]) codebook1 = kmeans( data, 2) codebook2 = kmeans( data, 2) codebook3 = kmeans( data, 2) allclose = (np.allclose( codebook1, codebook2 ) and np.allclose( codebook2, codebook3)) assert not allclose
def test_kmeans_random(): data = np.random.randn(1000, 3) data[500:] += np.array([10, 10, 10]) codebook1 = kmeans(data, 2) codebook2 = kmeans(data, 2) codebook3 = kmeans(data, 2) allclose = (np.allclose(codebook1, codebook2) and np.allclose(codebook2, codebook3)) assert not allclose
def test_kmeans(): data = np.array([ [0, 0], [0, 1], [1, 1], [-1, 1], [10, 10], [11, 10], [10, 11], [10, 10.1], [-100, -100], [-101, -100], [-102, -100], ], dtype=np.float) term = ( 100, 0, 0, 0, # run for 1 stage (maxTotStage) 0.10, # min consec RDL 0.10, # min accum RDL 3, # max run stages 0.50, # init. prob. of acceptance 10, # temp. run length 0.95) codebook = kmeans(data, 3, 'hybrid', term) # XXX should do test here return codebook
def call_kmeans(data, n, k, algorithm, term): # data: nxd # term = (100, 0, 0, 0, # run for 1 stage (maxTotStage) # 0.10, # min consec RDL # 0.10, # min accum RDL # 3, # max run stages # 0.50, # init. prob. of acceptance # 10, # temp. run length # 0.95) data = data.reshape((n, -1)) codebook = kmeans(data, k, algorithm, term) return codebook
def test_kmeans(): data = np.array([ [0, 0], [0, 1], [1, 1], [-1, 1], [10, 10], [11, 10], [10, 11], [10, 10.1], [-100, -100], [-101, -100], [-102, -100], ], dtype=np.float) codebook = kmeans(data, 3)
def test_kmeans(): data = np.array([[0, 0], [0, 1], [1, 1], [-1, 1], [10,10], [11,10], [10,11], [10,10.1], [-100, -100], [-101, -100], [-102, -100], ], dtype=np.float) codebook = kmeans( data, 3)