Ejemplo n.º 1
0
def errorArea(xaxis,
              bin_up,
              bin_down,
              fillcolor='blue',
              hatch=None,
              hatchcolor='green',
              **kwargs):
    if hatch == None:
        hatchcolor = 'none'

    if xaxis[-1] == inf:
        xbin = xaxis[-2] - xaxis[-3]
        xaxis[-1] = xaxis[-2] + xbin

    xlim([xaxis[0], xaxis[-1]])

    fill_xaxis = repeat(xaxis, 2)[1:-1]
    fill_bins_up = repeat(bin_up, 2)
    fill_bins_down = repeat(bin_down, 2)

    return fill_between(fill_xaxis,
                        fill_bins_up,
                        fill_bins_down,
                        facecolor=fillcolor,
                        edgecolor=hatchcolor,
                        hatch=hatch,
                        **kwargs)
Ejemplo n.º 2
0
def stackedBarPlot(xaxis, hist_list,
                   colors = ['C0','C1','C2','C3','C4','C5'],
                   linewidth = 1,
                   fill = True,
                   outer_line = True,
                   hatch = [None]*6,
                   zorder = -9,
                   data_axis = 0,
                   relative = False,
                   **kwargs):

    bin_array = array(hist_list)
    cumsum_axis = 0
    # Do the cumulative sum of the data
    bins_cumsum = insert(cumsum(bin_array, axis = cumsum_axis), 0, zeros(len(xaxis)-1), cumsum_axis)
    if relative:
        bins_cumsum /= bins_cumsum[-1, :]

    # Fix the xaxis
    original_xaxis = xaxis
    if xaxis[-1] == inf:
        xbin = xaxis[-2] - xaxis[-3]
        xaxis[-1] = xaxis[-2] + xbin

    xlim([xaxis[0], xaxis[-1]])
    fill_xaxis = repeat(xaxis,2)[1:-1]


    areas = []
    lines = []
    rectangles = []
    print('Cumsum results ', sum(bins_cumsum, axis = 1))

    nhistograms = bins_cumsum.shape[cumsum_axis]

    for index in range(1, bins_cumsum.shape[cumsum_axis]):
        if outer_line:
            lines.append(unfilledBar(original_xaxis, bins_cumsum[index, :], color = colors[index-1], linewidth = linewidth))
            lwbox = 1
        else:
            lwbox = 0
            #lines.append(unfilledBar(original_xaxis, bins_cumsum[:, index], color = colors[index-1], label = labels[index-1]))

        if hatch[index-1]:
            facecolor = 'white'
        else:
            facecolor = colors[index-1]
        if fill:
            areas.append( fill_between(repeat(xaxis,2)[1:-1], repeat(bins_cumsum[index,:],2), repeat(bins_cumsum[index-1,:],2),
                                       zorder = zorder-nhistograms+index, linewidth = 0,
                                       facecolor=facecolor, edgecolor = colors[index-1], hatch = hatch[index-1], **kwargs ))

            rectangles.append(matplotlib.patches.Rectangle((0,0), 1, 1, fc = facecolor, linewidth=2, zorder = zorder-1,
                                                           edgecolor = colors[index-1], hatch = hatch[index-1]))


    return lines, areas, rectangles
Ejemplo n.º 3
0
def errorHatch(xaxis, bin_up, bin_down,
              hatch = '/',
              fillcolor = 'blue',
              **kwargs):

    if xaxis[-1] == inf:
        xbin = xaxis[-2] - xaxis[-3]
        xaxis[-1] = xaxis[-2] + xbin

    xlim([xaxis[0], xaxis[-1]])

    fill_xaxis = repeat(xaxis,2)[1:-1]
    fill_bins_up  = repeat(bin_up,2)
    fill_bins_down = repeat(bin_down, 2)

    return fill_between(fill_xaxis , fill_bins_up, fill_bins_down, edgecolor = hatchcolor, hatch = hatch, rasterized = True, **kwargs)
Ejemplo n.º 4
0
 def plot_upd_impz(self, fig, taps, a=1):
     if not signal:
         return
     self.plot_init_impz(fig)
     ax1, ax2 = fig.get_axes()
     l = len(taps)
     impulse = pylab.repeat(0.,l); impulse[0] =1.
     x = arange(0,l)
     response = signal.lfilter(taps,a,impulse)
     ax1.stem(x, response)
     step = pylab.cumsum(response)
     ax2.stem(x, step)
Ejemplo n.º 5
0
 def plot_upd_impz(self, fig, taps, a=1):
     if not signal:
         return
     self.plot_init_impz(fig)
     ax1, ax2 = fig.get_axes()
     l = len(taps)
     impulse = pylab.repeat(0., l)
     impulse[0] = 1.
     x = arange(0, l)
     response = signal.lfilter(taps, a, impulse)
     ax1.stem(x, response)
     step = pylab.cumsum(response)
     ax2.stem(x, step)
Ejemplo n.º 6
0
def snakeScan(centre=(0, 0), range=(10e-6, 10e-6), spacing=(1.0e-6, 1.0e-6)):

    from pylab import arange, concatenate, repeat

    if len(spacing) == 1:
        spacing = (spacing, spacing)

    # define some grids
    xgrid = arange(20, 31)
    ygrid = arange(10, 16)

    xscan = concatenate([xgrid[:: (-1) ** i] for i in range(len(ygrid))])
    yscan = repeat(ygrid, len(xgrid))
    return list(zip(a, b))
Ejemplo n.º 7
0
 def _ichroma(self, V, **kwargs):
     """
     ::
     
         Inverse chromagram transform. Make a signal from a folded constant-Q transform.
     """
     if not (self._have_hcqft or self._have_cqft):
         return None
     a,b = self.HCQFT.shape if self._have_hcqft else self.CQFT.shape
     complete_octaves = a/self.nbpo # integer division, number of complete octaves
     if P.remainder(a,self.nbpo):
         complete_octaves += 1
     X = P.repeat(V, complete_octaves, 0)[:a,:] # truncate if necessary
     X /= X.max()
     X *= P.atleast_2d(P.linspace(1,0,X.shape[0])).T # weight the spectrum
     self.x_hat = self._icqft(X, **kwargs)
     return self.x_hat
Ejemplo n.º 8
0
 def _ichroma(self, V, **kwargs):
     """
     ::
     
         Inverse chromagram transform. Make a signal from a folded constant-Q transform.
     """
     if not (self._have_hcqft or self._have_cqft):
         return None
     a,b = self.HCQFT.shape if self._have_hcqft else self.CQFT.shape
     complete_octaves = a/self.nbpo # integer division, number of complete octaves
     if P.remainder(a,self.nbpo):
         complete_octaves += 1
     X = P.repeat(V, complete_octaves, 0)[:a,:] # truncate if necessary
     X /= X.max()
     X *= P.atleast_2d(P.linspace(1,0,X.shape[0])).T # weight the spectrum
     self.x_hat = self._icqft(X, **kwargs)
     return self.x_hat
Ejemplo n.º 9
0
Archivo: util.py Proyecto: wyolum/mmM
def impz(b,a=1):
    '''
    #Plot step and impulse response
    from http://mpastell.com/2010/01/18/fir-with-scipy/
    '''
    l = len(b)
    impulse = pylab.repeat(0.,l); impulse[0] =1.
    x = numpy.arange(0,l)
    response = signal.lfilter(b,a,impulse)
    pylab.subplot(211)
    pylab.stem(x, response)
    pylab.ylabel('Amplitude')
    pylab.xlabel(r'n (samples)')
    pylab.title(r'Impulse response')
    pylab.subplot(212)
    step = numpy.cumsum(response)
    pylab.stem(x, step)
    pylab.ylabel('Amplitude')
    pylab.xlabel(r'n (samples)')
    pylab.title(r'Step response')
    pylab.subplots_adjust(hspace=0.5)
Ejemplo n.º 10
0
Archivo: util.py Proyecto: wyolum/mmM
def impz(b, a=1):
    '''
    #Plot step and impulse response
    from http://mpastell.com/2010/01/18/fir-with-scipy/
    '''
    l = len(b)
    impulse = pylab.repeat(0., l)
    impulse[0] = 1.
    x = numpy.arange(0, l)
    response = signal.lfilter(b, a, impulse)
    pylab.subplot(211)
    pylab.stem(x, response)
    pylab.ylabel('Amplitude')
    pylab.xlabel(r'n (samples)')
    pylab.title(r'Impulse response')
    pylab.subplot(212)
    step = numpy.cumsum(response)
    pylab.stem(x, step)
    pylab.ylabel('Amplitude')
    pylab.xlabel(r'n (samples)')
    pylab.title(r'Step response')
    pylab.subplots_adjust(hspace=0.5)
Ejemplo n.º 11
0
def print_QE_tables(Qs,Es,qs,delim="\t"):
  """
  Returns string of 'delim'-delimited printout. Assumes that
  Qs,Es are of the form returned by the Stats.QEPlot method, and that
  qs is the list of quantile percentages that were supplied to the same
  method.
  """

  ret = ""

  rows = array(Qs.keys())
  rows.sort()

  # we want 3 values for each Q and also the E
  qs = map(str,repeat(qs,3))
  for i in range(len(qs)/3):
    qs[i*3+0] += " lower CI"
    qs[i*3+1] += " upper CI"
  cols = qs+["E","E-moe","E+moe"]

  ret += delim + delim.join(cols) + "\n"
  
  for row in rows:
    Q = Qs[row]
    E,moe = Es[row]

    ret += str(row) + delim

    for qlh in Q: 
      #excel wants low,high,middle
      ret += delim.join(map(str,(qlh[1],qlh[2],qlh[0]))) + delim
    
    ret += str(E) + delim + str(E-moe) + delim + str(E+moe)
    ret += "\n"
  
  return ret
Ejemplo n.º 12
0
def print_QE_tables(Qs, Es, qs, delim="\t"):
    """
  Returns string of 'delim'-delimited printout. Assumes that
  Qs,Es are of the form returned by the Stats.QEPlot method, and that
  qs is the list of quantile percentages that were supplied to the same
  method.
  """

    ret = ""

    rows = array(Qs.keys())
    rows.sort()

    # we want 3 values for each Q and also the E
    qs = map(str, repeat(qs, 3))
    for i in range(len(qs) / 3):
        qs[i * 3 + 0] += " lower CI"
        qs[i * 3 + 1] += " upper CI"
    cols = qs + ["E", "E-moe", "E+moe"]

    ret += delim + delim.join(cols) + "\n"

    for row in rows:
        Q = Qs[row]
        E, moe = Es[row]

        ret += str(row) + delim

        for qlh in Q:
            #excel wants low,high,middle
            ret += delim.join(map(str, (qlh[1], qlh[2], qlh[0]))) + delim

        ret += str(E) + delim + str(E - moe) + delim + str(E + moe)
        ret += "\n"

    return ret
Ejemplo n.º 13
0
# keep only lowest level of each selected branch
nz = len(zelong)
keep = pl.ones(nz, dtype=bool)
for i in range(nz):
    if keep[i]:
        t = d[zelong[i]]
        for k in t.descendants:
            if k.idx in zelong:
                keep[i] = False

zelong = zelong[keep]
n_elong_dendro = len(zelong)

# this will be for the list of fil,branch pairs that overlap this dendro, and by how many pixels:
overlapping_fil_branches = pl.repeat({}, n_elong_dendro)
for i in range(n_elong_dendro):
    overlapping_fil_branches[i] = {
        "dendro_id": 0,
        "filbranches": [],
        "npixoverlap": []
    }.copy()

#================================================================
mom8 = fits.getdata(mom8file)
pl.clf()
pl.imshow((pl.nanmax(mom8) - mom8), origin="bottom", cmap="gray")

pl.subplots_adjust(left=0.05, right=0.98, bottom=0.05, top=0.98)
pl.xlim(xra)
pl.ylim(yra)