Ejemplo n.º 1
0
Archivo: F2d_F2.py Proyecto: Jeff182/CJ
  def make_plotI(self):
    # retrieve data
    D=self.D

    kmap={}
    kmap['AV18']   = {'c':'r','ls':'-'}
    kmap['CDBONN'] = {'c':'g','ls':'--'}
    kmap['WJC1']   = {'c':'k','ls':'-.'}
    kmap['WJC2']   = {'c':'b','ls':':'}

    ax=py.subplot(111)
    for k in ['AV18','CDBONN','WJC1','WJC2']:
      DF=D[k]
      DF=DF[DF.Q2==10]
      if k=='CDBONN':
        label='CDBonn'
      else:
        label=k
      cls=kmap[k]['c']+kmap[k]['ls']
      ax.plot(DF.X,DF.THEORY,cls,lw=2.0,label=tex(label))

    ax.set_xlabel('$x$',size=25)
    ax.set_ylabel(r'$F_2^d\, /\, F_2^N$',size=25)
    ax.set_ylim(0.97,1.08)
    ax.axhline(1,color='k',ls='-',alpha=0.2)

    ax.legend(frameon=0,loc=2,fontsize=22)
    py.tick_params(axis='both',labelsize=22)
    py.tight_layout()
    py.savefig('gallery/F2d_F2_I.pdf')
    py.close()
Ejemplo n.º 2
0
def plotBar(data=None,color_id=None,figure_id=None,name=None,flag=False):
	ax = pl.subplot(figure_id)
	width = 0.8
	x=sp.arange(7)
	if not (name=="VaribenchSelected"):
		pl.bar(x-0.4,data,width=width,color=color_t[color_id],hatch="/o/o/")
	else:
		pl.bar(x-0.4,data,width=width,color=color_t[color_id],hatch="ooo")

	tmp = data.copy()
	tmp[1::] = 0
	pl.xticks(x,['All','Pure',']0.0,1.0[','[0.1,0.9]','[0.2,0.8]','[0.3,0.7]','[0.4,0.6]'],fontsize=font_size,rotation=90)
	ln = sp.log10(len(name))
	pl.text(3.5-ln,0.95,name)
	if flag:
		remove_border(left=False)
		pl.yticks([0.5,0.6,0.7,0.8,0.9,1.0])
		pl.grid(axis='y')
		pl.tick_params(axis='y',which="both",labelleft='off',left='off')
	else:
		pl.ylabel("AUC")
		remove_border()
		pl.yticks([0.5,0.6,0.7,0.8,0.9,1.0])
		pl.grid(axis='y')
	pl.ylim(0.5,1)
	pl.xlim(-0.5,7.5)
	return ax
Ejemplo n.º 3
0
def fixup_innerprod(current_data):
    import pylab
    size = 28
    addgauges(current_data)
    pylab.title('Inner Product', fontsize=size)
    pylab.xticks(fontsize=size)
    pylab.tick_params(axis='y', labelleft='off')
Ejemplo n.º 4
0
Archivo: F2d_F2.py Proyecto: Jeff182/CJ
  def make_plotII(self):
    # retrieve data
    D=self.D

    kmap={}
    kmap['Q2 = 2']   = {'c':'r','ls':'-'}
    kmap['Q2 = 5']   = {'c':'g','ls':'--'}
    kmap['Q2 = 10']  = {'c':'b','ls':'-.'}
    kmap['Q2 = 100'] = {'c':'k','ls':':'}


    ax=py.subplot(111)
    DF=D['AV18']
    for Q2 in [2,5,10,100]:
      k='Q2 = %d'%Q2
      Q2=float(k.split('=')[1])
      DF=D['AV18'][D['AV18'].Q2==Q2]
      cls=kmap[k]['c']+kmap[k]['ls']
      ax.plot(DF.X,DF.THEORY,cls,lw=2.0,label=r'$Q^2=%0.0f~{\rm GeV}^2$'%Q2)

    ax.set_xlabel('$x$',size=25)
    ax.set_ylabel(r'$F_2^d\, /\, F_2^N$',size=25)
    ax.set_ylim(0.97,1.08)
    ax.axhline(1,color='k',ls='-',alpha=0.2)

    ax.legend(frameon=0,loc=2,fontsize=22)
    py.tick_params(axis='both',labelsize=22)
    py.tight_layout()
    py.savefig('gallery/F2d_F2_II.pdf')
Ejemplo n.º 5
0
def chart(idx, a, b, label, FILE):
    pylab.ioff()
    fig_width_pt = 350 					     # Get this from LaTeX using \showthe\columnwidth
    inches_per_pt = 1.0/72.27                # Convert pt to inch
    golden_mean = ((5**0.5)-1.0)/2.0         # Aesthetic ratio
    fig_width = fig_width_pt*inches_per_pt   # width in inches   
    fig_height = fig_width*golden_mean       # height in inches
    fig_size =  [fig_width*0.42,fig_height]

    params = { 'backend': 'ps',
           'axes.labelsize': 10,
           'text.fontsize': 10,
           'legend.fontsize': 10,
           'xtick.labelsize': 8,
           'ytick.labelsize': 8,
           'text.usetex': True,
           'figure.figsize': fig_size }

    pylab.rcParams.update(params)

    home = '/home/nealbob'
    folder = '/Dropbox/Thesis/IMG/chapter3/'
    img_ext = '.pdf'

    pylab.figure()
    pylab.boxplot(idx, whis=100)
    pylab.ylim(a, b)
    #pylab.ylabel(label)
    pylab.tick_params(axis='x', which = 'both', labelbottom='off')
    pylab.savefig(home + folder + FILE + img_ext)
    pylab.show()
Ejemplo n.º 6
0
def plot_data(comp, c='b'):
    """utility function to make the Kantrowitz Limit Plot""" 

    MN = []
    W_tube = []
    W_kant = []

    for m in np.arange(.1,1.1,.1): 
        comp.Mach_pod = m
        comp.run()
        #print comp.radius_tube, comp.Mach_pod, comp.W_tube, comp.W_kant, comp.W_excess

        MN.append(m)
        W_kant.append(comp.W_kant)
        W_tube.append(comp.W_tube)

    fig = p.plot(MN,W_tube, '-', label="%3.1f Req."%(comp._tube_area/comp._inlet_area), lw=3, c=c)
    p.plot(MN,W_kant, '--', label="%3.1f Limit"%(comp._tube_area/comp._inlet_area),   lw=3, c=c)
    #p.legend(loc="best")
    p.tick_params(axis='both', which='major', labelsize=15)
    p.xlabel('Pod Mach Number', fontsize=18)
    p.ylabel('Flow Rate (kg/sec)', fontsize=18)
    p.title('Tube Flow Limits for Three Area Ratios', fontsize=20)

    return fig
Ejemplo n.º 7
0
    def plot(self, ylog10scale = False, timescale = "years", year = 25):
        """
        Generate figure and axis for the population structure
        timescale choose from "2N0", "4N0", "generation" or "years"
        """
        time = self.Time
        pop  = self.pop
        for i in range(1,len(self.pop)):
            if type(pop[i]) == type(""):
                # ignore migration commands, and replace by (unchanged) pop size
                pop[i] = pop[i-1]
        
        if time[0] != 0 :
            time.insert(0, float(0))
            pop.insert(0, float(1))
        
        if timescale == "years":
            time = [ti * 4 * self.scaling_N0 * year for ti in time ]
            pl.xlabel("Time (years, "+`year`+" years per generation)",  fontsize=20)    
            #pl.xlabel("Years")    
        elif timescale == "generation":
            time = [ti * 4 * self.scaling_N0 for ti in time ]
            pl.xlabel("Generations)")    
        elif timescale == "4N0":
            time = [ti*1 for ti in time ]
            pl.xlabel("Time (4N generations)")    
        elif timescale == "2N0":
            time = [ti*2 for ti in time ]
            pl.xlabel("Time (2N generations)")       
        else:
            print "timescale must be one of \"4N0\", \"generation\", or \"years\""
            return
        
        time[0] = time[1] / float(20)
        
        time.append(time[-1] * 2)
        yaxis_scaler = 10000
        
        pop = [popi * self.scaling_N0 / float(yaxis_scaler) for popi in pop ]
        pop.insert(0, pop[0])               
        pl.xscale ('log', basex = 10)        
        #pl.xlim(min(time), max(time))
        pl.xlim(1e3, 1e7)
        
        if ylog10scale:
            pl.ylim(0.06, 10000)
            pl.yscale ('log', basey = 10)            
        else:
            pl.ylim(0, max(pop)+2)
        
        pl.ylim(0,5)            
        pl.tick_params(labelsize=20)

        #pl.step(time, pop , color = "blue", linewidth=5.0)
        pl.step(time, pop , color = "red", linewidth=5.0)
        pl.grid()
        #pl.step(time, pop , color = "black", linewidth=5.0)
        #pl.title ( self.case + " population structure" )
        #pl.ylabel("Pop size ($*$ "+`yaxis_scaler` +")")
        pl.ylabel("Effective population size",fontsize=20 )
    def createBasisGraph(self, data):
        plt.figure(self.nFig)
        plt.suptitle('Basis')
        nBase = data.shape[1]
        # The cols number of subplot is 
        nSubCols = nBase / 10
        if nSubCols > 0:
            if nBase % 2 == 0:
                nSubRows = nBase / nSubCols
            else:
                nSubRows = nBase / nSubCols + 1
        else:
            nSubRows = nBase 
            nSubCols = 1
        # freqList = np.fft.fftfreq(513, d = 1.0 / 44100)

        for i in range(nBase):
            nowFig = self.nFig + (i / nSubRows) + 1
            # Because Index of graph is start by 1, The Graph index start from i + 1.
            plt.subplot(nSubRows, nSubCols, i + 1)
            plt.tick_params(labelleft='off', labelbottom='off')

            # FIXME
            #plt.ylabel(self.st5[i%12] + str(i/12  + 1))
            plt.ylabel(str(i))
            plt.plot(data[:,i])
        # Beacuse I want to add lable in bottom, xlabel is declaration after loop.
        plt.tick_params(labelleft='off', labelbottom='on')
        plt.xlabel('frequency [Hz]')

        #self.nFig += nowFig
        self.nFig += 1 
Ejemplo n.º 9
0
 def GraphMaker(self,name,c,d,e):
     """Produces graphs based on the user entered equations in the Result Window"""
     
     model = name.rstrip("']")
     model = model.lstrip("'[")
     model = str(model)
     name = ''
     for i in xrange(len(model)):
         if model[i] == '_':
             name += ' '
         else:
             name += model[i]
             
     __location__ = os.path.dirname(sys.argv[0]) 
     loc = os.path.join(__location__, 'Data/')
     
     Params = ["w_0", "w_a", "w_p", "w_DE", "Omega_M", "Omega_DE", "x1", "x2", "y1", "y2", "c1", "c2", "u", "Lambda_1", "Lambda_2", "n"]
     for entry in xrange(len(Params)):
         exec( Params[entry] + " = np.genfromtxt(loc+str(model)+'.dat', usecols = "+str(entry)+", skip_header = 1)" )
             
     A = eval(c)
     B = eval(d)
         
     py.figure(int(e))
     py.plot(A, B, 'b.')
     py.xlabel(c, fontsize = 55)
     py.ylabel(d, fontsize = 55)
     py.title('Results from '+str(name), fontsize = 55)
     py.tick_params(labelsize = 35, size = 15, width = 5, top = 0, right = 0)
         
     py.show()
Ejemplo n.º 10
0
    def histplot(self, extradataA = [], extradataG = [], intensity = []):
        pylab.figure(figsize = (25,8))
        cat = ['NT, 500ng/mL DOX', 'DLG siRNA, 500ng/mL DOX', 'NuMA siRNA, 500ng/mL DOX', 'NT, 1ug/mL DOX']
        pops = []
        for i in xrange(3):
            pylab.subplot(1,3,i+1)
            pop = self.angles[(self.categories == i)]# &  (self.GFP > -np.log(12.5))]# & (intensity == 'r')]
            print "cat {0}, pop {1}, pop + GFP {2}".format(i, len(self.angles[self.categories == i]), len(pop))
            pops.append(pop)
            hist, binedges = np.histogram(pop, bins = 18)
            pylab.tick_params(axis='both', which='major', labelsize=25)
            pylab.plot(binedges[:-1], np.cumsum(hist)/1./len(pop), data.colors[i], label = data.cat[i], linewidth = 4)
            if len(extradataA) > i:
                print extradataA[i]
                h, bins = np.histogram(extradataA[i], bins= 18)
                hbis = h/1./len(extradataA[i])
                x, y = [], []
                for index in xrange(len(hbis)):
                    x.extend([bins[index], bins[index+1]])
                    y.extend([hbis[index], hbis[index]])
                print x, y, len(x)
                pylab.tick_params(axis='both', which='major', labelsize=25)
                pylab.plot(bins[:-1], np.cumsum(h)/1./len(extradataA[i]), 'k', linewidth = 4)

            pylab.xlabel("Angle (degre)", fontsize = 25)
            #pylab.title(cat[i])
            pylab.ylim([0., 1.2])
            pylab.legend(loc = 2, prop = {'size' : 20})
        for ip, p in enumerate(pops):
            for ip2, p2 in enumerate(pops):
                ksstat, kspval = scipy.stats.ks_2samp(p2, p)
                print "#### cat{0} & cat{3} : ks Stat {1}, pvalue {2}".format(ip, ksstat, kspval, ip2)
        pylab.show()
Ejemplo n.º 11
0
    def plotAgainstGFP(self, extradataA = [], extradataG = [], intensity = [], seq = []):
        fig1 = pylab.figure(figsize = (25, 10))
        print len(self.GFP)
        for i in xrange(min(len(data.cat), 3)):
            print len(self.GFP[self.categories == i])
            vect = []
            pylab.subplot(1,3,i+1)
            #pylab.hist(self.GFP[self.categories == i], bins = 20, color = data.colors[i])
            pop = self.GFP[self.categories == i]
            pylab.plot(self.GFP[self.categories == i], self.angles[self.categories == i], data.colors[i]+'o', markersize = 8)#, label = data.cat[i])
            print "cat", i, "n pop", len(self.GFP[(self.categories == i) & (self.GFP > -np.log(12.5))])
            x = np.linspace(np.min(self.GFP[self.categories == i]), np.percentile(self.GFP[self.categories == i], 80),40)
            #fig1.canvas.mpl_connect('pick_event', onpick)
            for j in x:
                vect.append(np.median(self.angles[(self.GFP > j) & (self.categories == i)]))

            pylab.plot([-4.5, -0.5], [vect[0], vect[0]], data.colors[i], label = "mediane de la population entiere", linewidth = 5)
            print vect[0], vect[np.argmax(x > -np.log(12.5))]
            pylab.plot([-np.log(12.5), -0.5], [vect[np.argmax(x > -np.log(12.5))] for k in  [0,1]], data.colors[i], label = "mediane de la population de droite", linewidth = 5, ls = '--')
            pylab.axvline(x = -np.log(12.5), color = 'm', ls = '--', linewidth = 3)
            pylab.xlim([-4.5, -0.5])
            pylab.legend(loc = 2, prop = {'size':17})

            pylab.title(data.cat[i].split(',')[0], fontsize = 24)
            pylab.xlabel('score GFP', fontsize = 20)
            pylab.ylabel('Angle (degre)', fontsize = 20)
            pylab.tick_params(axis='both', which='major', labelsize=20)
            pylab.ylim([-5, 105])
            ##pylab.xscale('log')
        pylab.show()
Ejemplo n.º 12
0
def chart(SW, a, b, label, folder, FILE):
    pylab.ioff()
    fig_width_pt = 350 					     # Get this from LaTeX using \showthe\columnwidth
    inches_per_pt = 1.0/72.27                # Convert pt to inch
    golden_mean = ((5**0.5)-1.0)/2.0         # Aesthetic ratio
    fig_width = fig_width_pt*inches_per_pt   # width in inches   
    fig_height = fig_width*golden_mean       # height in inches
    fig_size =  [fig_width,fig_height]

    params = { 'backend': 'ps',
           'axes.labelsize': 10,
           'text.fontsize': 10,
           'legend.fontsize': 10,
           'xtick.labelsize': 8,
           'ytick.labelsize': 8,
           'text.usetex': True,
           'figure.figsize': fig_size }

    pylab.rcParams.update(params)

    home = '/home/nealbob'
    img_ext = '.pdf'

    pylab.figure()
    pylab.boxplot([SW['SWA'], SW['OA'], SW['NS']], whis=5)
    pylab.axhline(y=1.0, color='0.5', linewidth=0.5, alpha=0.75, linestyle=':')
    pylab.ylim(a, b)
    pylab.ylabel(label)
    pylab.tick_params(axis='x', which = 'both', labelbottom='off')
    pylab.figtext(0.225, 0.06, 'SWA', fontsize = 10)
    pylab.figtext(0.495, 0.06, 'OA', fontsize = 10)
    pylab.figtext(0.76, 0.06, 'NS', fontsize = 10)
    pylab.savefig(home + folder + FILE + img_ext)
    pylab.show()
    def createCoefGraph(data, nFig, lim, ymin):
        plt.figure(nFig)
        plt.suptitle('Coef')
        nBase = data.shape[0]
        nSubCols = nBase / 10
        if nSubCols > 0:
            nSubRows = nBase / nSubCols
        else:
            nSubRows = nBase 
            nSubCols = 	1
        # print data.shape

        # サンプリング周波数とシフト幅によって式を変える必要あり
        timeLine = [i * 1024 / 8000.0 for i in range(data.shape[1])]
        # print len(timeLine)
        for i in range(nBase):
            plt.subplot(nSubRows, nSubCols, i + 1)
            plt.tick_params(labelleft='off', labelbottom='off')
            # FIXME: Arguments of X
            # plt.plot(timeLine, data[i,:])
            if lim:
                plt.ylim(ymin=ymin)
            plt.plot(timeLine, data[i,:])
        # Beacuse I want to add lable in bottom, xlabel is declaration after loop.
        plt.tick_params(labelleft='off', labelbottom="on")
        plt.xlabel('time [ms]')
Ejemplo n.º 14
0
def plot_data(p, c='b'):
    '''utility function to make the Kantrowitz Limit Plot'''
    Machs = []
    W_tube = []
    W_kant = []
    for Mach in np.arange(.2, 1.1, .1):
        p['comp.Mach'] = Mach
        p.run()
        Machs.append(Mach)
        W_kant.append(p['comp.W_kant'])
        W_tube.append(p['comp.W_tube'])
    print('Area in:', p['comp.inlet.area_out'])
    fig = pylab.plot(Machs,
                     W_tube,
                     '-',
                     label="%3.1f Req." %
                     (p['comp.tube_area'] / p['comp.inlet.area_out']),
                     lw=3,
                     c=c)
    pylab.plot(Machs,
               W_kant,
               '--',
               label="%3.1f Limit" %
               (p['comp.tube_area'] / p['comp.inlet.area_out']),
               lw=3,
               c=c)
    pylab.tick_params(axis='both', which='major', labelsize=15)
    pylab.xlabel('Pod Mach Number', fontsize=18)
    pylab.ylabel('Flow Rate (kg/sec)', fontsize=18)
    pylab.title('Tube Flow Limits for Three Area Ratios', fontsize=20)
    return fig
Ejemplo n.º 15
0
def plots_of_lp_event_exchanges():
    pylab.title('Remote Events Sent Between LPs')
    data = np.loadtxt("analysisData/eventsExchanged-remote.csv", dtype=np.float_, delimiter = ",", skiprows=2, usecols=(2,3,4,5))
    outFile = outDir + 'countsOfLpToLpEventExchanges'
    pylab.plot(data[data[:,0].argsort()][:,0].astype(np.intc))
#    pylab.xlabel('Number of Events')
    pylab.tick_params(axis='x',labelbottom='off')
    pylab.ylabel('Number of Events Sent')
    display_graph(outFile)

    pylab.title('Timestamp Deltas of Remote Events')
    outFile = outDir + 'timeStampDeltasOfRemoteEvents'
    stride = max(int(max(len(data[:,1]),len(data[:,2]),len(data[:,3]))/20),1)
    pylab.plot(data[data[:,1].argsort()][:,1], color=colors[0], label="Minimum", marker='o', markevery=stride)
    pylab.plot(data[data[:,3].argsort()][:,3], color=colors[1], label="Average", marker='x', markevery=stride)
#    pylab.plot(data[data[:,2].argsort()][:,2], color=colors[2], label="Maximum", marker='*', markevery=stride)
    pylab.tick_params(axis='x',labelbottom='off')
    pylab.ylabel('Timestamp Delta (ReceiveTime - SendTime)')
    pylab.ylim([-.1,np.amax(data[:,3].astype(np.intc))+1])
#    pylab.yscale('log')
    pylab.legend(loc='best')
    display_graph(outFile)

    pylab.title('Histogram of Timestamp Deltas of Remote Events')
    outFile = outDir + 'timeStampDeltasOfRemoteEvents-hist'
    pylab.hist((data[:,1],data[:,3],data[:,2]), label=('Minimum', 'Average', 'Maximum'), color=(colors[0], colors[1], colors[2]), bins=10)
    pylab.xlabel('Timestamp Delta (ReceiveTime - SendTime)')    
    pylab.ylabel('Number of LPs')
    pylab.legend(loc='best')
    display_graph(outFile)

    return
Ejemplo n.º 16
0
def profile_of_local_events_exec_by_lp():
    pylab.title('Locally Generated Events')
    outFile = outDir + 'percentOfExecutedEventsThatAreLocal'
    data = np.loadtxt("analysisData/eventsExecutedByLP.csv", dtype=np.intc, delimiter = ",", skiprows=2, usecols=(1,2,3))
    x_index = np.arange(len(data))
    pylab.plot(x_index, sorted(percent_of_LP_events_that_are_local(data)))
    pylab.xlabel('LPs (sorted by percent local)')
    pylab.tick_params(axis='x',labelbottom='off')
    pylab.ylabel('Percent of Total Executed (Ave=%.2f%%)' % np.mean(percent_of_LP_events_that_are_local(data)))
    pylab.ylim((0,100))
    # fill the area below the line
    ax = pylab.gca()
#    ax.fill_between(x_index, sorted(percent_of_LP_events_that_are_local(data)), 0, facecolor=colors[0])
    ax.get_yaxis().set_major_formatter(mpl.ticker.FormatStrFormatter('%.1f%%'))
    display_graph(outFile)

    pylab.title('Locally Generated Events Executed')
    outFile = outDir + 'percentOfExecutedEventsThatAreLocal-histogram'
    pylab.hist(sorted(percent_of_LP_events_that_are_local(data)))
    ax = pylab.gca()
    ax.get_xaxis().set_major_formatter(mpl.ticker.FormatStrFormatter('%.1f%%'))
    pylab.xlabel('Percent of Local Events Executed')
    pylab.ylabel('Number of LPs (Total=%s)' % "{:,}".format(total_lps))
    display_graph(outFile)
    return
Ejemplo n.º 17
0
    def plot_currents(self, plot_which):

        global figures

        if plot_which == "all":
            plot_which = [i for i in range(1, self.instance["no_feeders"] + 1)]
        time_scale = [datetime.datetime(2000, 1, 1, 0) + datetime.timedelta(minutes=i) for i in range(1440)]
        plt.figure(figures)
        figures += 1
        lines_to_plot = len(plot_which)

        for i in range(lines_to_plot):

            CR = np.array(self.extract_from_csv(plot_which[i], self.instance["iteration"]))
            CR = np.reshape(CR, (-1, 3))

            plt.subplot(lines_to_plot, 1, 1 + i)
            if (i + 1) != lines_to_plot:
                plt.plot(time_scale, CR)
                plt.tick_params(axis='x', which='both', bottom='off', top='off', labelbottom='off')
            else:
                plt.plot(time_scale, CR)

        plt.subplot(lines_to_plot, 1, 1)
        plt.title("Current at the head of the Feeders")
Ejemplo n.º 18
0
def embedSystemtsne(embedding):
    pl.figure()
    pl.scatter(embedding[:,0],embedding[:,1],c=range(len(embedding[:,0])),linewidths=0)
    pl.title('t-distributed stochastic neighbor embedding of observed system states')
    pl.tick_params(labelleft='off', labelbottom='off')
    pl.colorbar().set_label('Time (ms)')
    pl.show()
Ejemplo n.º 19
0
def embedIndividualstsne(embedding):
    pl.figure()
    pl.scatter(embedding[:,0],embedding[:,1],c=d,linewidths=0)
    pl.title('t-distributed stochastic neighbor embedding of all individual neurons')
    pl.tick_params(labelleft='off', labelbottom='off')
    pl.colorbar().set_label('Parameter d (after-spike increment value of recovery variable u)')
    pl.show()
Ejemplo n.º 20
0
def fixup_adjoint(current_data):
    import pylab
    size = 36
    addgauges(current_data)
    pylab.title('Adjoint Pressure', fontsize=size)
    pylab.xticks([-2, 0, 2, 4, 6], fontsize=size)
    pylab.tick_params(axis='y', labelleft='off')
Ejemplo n.º 21
0
def clusterHeatmap(df, title, row_label_map, col_label_map, colormap=my_cmap, 
                   cluster_rows=False, cluster_columns=False, cluster_data=None,
                   row_dendrogram=False, column_dendrogram=False, width=30, height=20, vmin=-3, vmax=3, distmethod="correlation", colorbar=True, colorbar_shrink=0.2, label_values=False):

    cm = pylab.get_cmap(colormap)
    cm.set_bad("0.9")

    # do clustering 
    if cluster_data is None:
        cluster_data = df # cluster the same data that we are plotting    

    matplotlib.rcParams['figure.figsize'] = [width, height]    
    #    pylab.figsize(20, 10)
    pylab.title(title)
#    pylab.text(0,-5,str(datetime.date.today()))
    
    # ylabels = [genesym[geneid] for geneid in pt.axes[0][Z['leaves']]]
    #  xlabels = pt.axes[1][cZ['leaves']]
    
    orderedVal = df
    
    if cluster_rows:
        distances = scipy.cluster.hierarchy.distance.pdist(cluster_data.values, distmethod)
        rowY = fastcluster.linkage(distances)
        rowZ = scipy.cluster.hierarchy.dendrogram(rowY, orientation='right', no_plot=True)
        orderedVal = df.reindex(index=df.axes[0][rowZ['leaves']])

        
    if cluster_columns:
        coldist = scipy.cluster.hierarchy.distance.pdist(df.values.transpose(), distmethod)
        cY = scipy.cluster.hierarchy.linkage(coldist)
        cZ = scipy.cluster.hierarchy.dendrogram(cY, no_plot=True)    
        orderedVal = orderedVal.reindex(columns=df.axes[1][cZ['leaves']])
    
    # row labels 
    if row_label_map is not None:
        pylab.yticks(range(0, len(orderedVal.index)), [row_label_map[i] for i in orderedVal.index])        
    else:
        pylab.yticks(range(0, len(orderedVal.index)), orderedVal.index)
    pylab.xticks(range(0, len(orderedVal.columns)), orderedVal.columns, rotation=90)

    
    if col_label_map is not None:
        pylab.xticks(range(0, len(orderedVal.columns)), [col_label_map[i] for i in orderedVal.columns])                
    

    if label_values:
        cmatrix = orderedVal.as_matrix()
        for x in range(cmatrix.shape[0]):
            for y in range(cmatrix.shape[1]):
                if cmatrix[x, y] >= 0:
                    pylab.text(y, x, "%.1f" % cmatrix[x,y], horizontalalignment='center',
                 verticalalignment='center')        
    
    #orderedVal = orderedVal[:,]
    pylab.tick_params(direction="out")
    pylab.imshow(orderedVal, interpolation="nearest", cmap=cm, aspect='auto', norm=None, vmin=vmin, vmax=vmax)
    if colorbar:
        pylab.colorbar(shrink=colorbar_shrink)
Ejemplo n.º 22
0
def fixup_innerprod(current_data):
    import pylab

    size = 28
    addgauges(current_data)
    pylab.title("Inner Product", fontsize=size)
    pylab.xticks(fontsize=size)
    pylab.tick_params(axis="y", labelleft="off")
Ejemplo n.º 23
0
 def aa_innerprod(current_data):
     from pylab import ticklabel_format, xticks, gca, cos, pi, yticks
     plotcc(current_data)
     title_innerproduct(current_data)
     ticklabel_format(format='plain',useOffset=False)
     xticks([180, 200, 220, 240], rotation=20, fontsize = 28)
     pylab.tick_params(axis='y', labelleft='off')
     a = gca()
     a.set_aspect(1./cos(41.75*pi/180.))
Ejemplo n.º 24
0
def plot(data_x,data_y,title = "", lim = True):
    "Helper function to plot results of koch curve"
    py.title(title)
    py.plot(data_x,data_y,'r',lw=2)
    py.tick_params(axis='both', which='both', bottom=0, top=0,
                   left=0, right=0, labelbottom=0, labelleft =0) 
    if lim:
        py.xlim([0,3])
        py.ylim([0,1])
Ejemplo n.º 25
0
def _setup_grid_and_axes(label_x, label_y):
    grid(True)

    # Set axes labels
    xlabel(label_x, fontsize=AXIS_LABEL_SIZE)
    ylabel(label_y, fontsize=AXIS_LABEL_SIZE)

    # Set the axis ticks
    tick_params(axis='both', which='major', labelsize=TICKS_LABEL_SIZE)
Ejemplo n.º 26
0
def include_png(in_file, title=None, figsize=(11.7,8.3)):
    fig = plt.figure(figsize=figsize)
    img = plt.imread(in_file)
    plt.imshow(img)
    plt.grid(False)
    plt.tick_params(labelbottom='off', labeltop='off', labelleft='off', labelright='off')
    plt.title(title, fontsize='10')
    plt.close()
    return fig
Ejemplo n.º 27
0
def theme(ax=None, minorticks=False):
    """ update plot to make it nice and uniform """
    from matplotlib.ticker import AutoMinorLocator
    from pylab import rcParams, gca, tick_params
    if minorticks:
        if ax is None:
            ax = gca()
        ax.yaxis.set_minor_locator(AutoMinorLocator())
        ax.xaxis.set_minor_locator(AutoMinorLocator())
    tick_params(which='both', width=rcParams['lines.linewidth'])
Ejemplo n.º 28
0
def embedSystem(embedding,explained_variance):
    pl.figure(figsize=(fw,fh))
    pl.scatter(embedding[:,0],embedding[:,1],c=spikes,linewidths=0)
    pl.title('Two-dimensional embedding explains ' + str(round(explained_variance,3)*100) + '% of variance among observed system states')
    pl.xlabel('Principal component 1')
    pl.ylabel('Principal component 2')
    pl.tick_params(labelleft='off', labelbottom='off')
    pl.colorbar().set_label('Instantaneous spike rate (spikes/ms)')
    #pl.show()
    pl.savefig(str(N) + "--" + "2Dsystemembedding.pdf")
Ejemplo n.º 29
0
def embedIndividuals(embedding,explained_variance):
    pl.figure(figsize=(fw,fh))
    pl.scatter(embedding[:,0],embedding[:,1],c=d,linewidths=0)
    pl.title('Two-dimensional embedding explains ' + str(round(explained_variance,3)*100) + '% of variance among individual neurons')
    pl.xlabel('Principal component 1')
    pl.ylabel('Principal component 2')
    pl.tick_params(labelleft='off', labelbottom='off')
    pl.colorbar().set_label('Parameter d (after-spike increment value of recovery variable u)')
    #pl.show()
    pl.savefig(str(N) + "--" + "2Dindividualembedding.pdf")
def plot_stc_time_point(stc, subject, limits=[5, 10, 15], time_index=0,
                        surf='inflated', measure='dSPM', subjects_dir=None):
    """Plot a time instant from a SourceEstimate using matplotlib

    The same could be done with mayavi using proper 3D.

    Parameters
    ----------
    stc : instance of SourceEstimate
        The SourceEstimate to plot.
    subject : string
        The subject name (only needed if surf is a string).
    time_index : int
        Time index to plot.
    surf : str, or instance of surfaces
        Surface to use (e.g., 'inflated' or 'white'), or pre-loaded surfaces.
    measure : str
        The label for the colorbar. None turns the colorbar off.
    subjects_dir : str, or None
        Path to the SUBJECTS_DIR. If None, the path is obtained by using
        the environment variable SUBJECTS_DIR.
    """
    subjects_dir = get_subjects_dir(subjects_dir)
    pl.figure(facecolor='k', figsize=(8, 5))
    hemis = ['lh', 'rh']
    if isinstance(surf, str):
        surf = [read_surface(op.join(subjects_dir, subject, 'surf',
                                     '%s.%s' % (h, surf))) for h in hemis]
    my_cmap = mne_analyze_colormap(limits)
    for hi, h in enumerate(hemis):
        coords = surf[hi][0][stc.vertno[hi]]
        if hi == 0:
            vals = stc_all_cluster_vis.lh_data[:, time_index]
        else:
            vals = stc_all_cluster_vis.rh_data[:, time_index]
        ax = pl.subplot(1, 2, 1 - hi, axis_bgcolor='none')
        pl.tick_params(labelbottom='off', labelleft='off')
        flipper = -1 if hi == 1 else 1
        sc = ax.scatter(flipper * coords[:, 1], coords[:, 2], c=vals,
                        vmin=-limits[2], vmax=limits[2], cmap=my_cmap,
                        edgecolors='none', s=5)
        ax.set_aspect('equal')
        pl.axis('off')
    try:
        pl.tight_layout(0)
    except:
        pass
    if measure is not None:
        cax = pl.axes([0.85, 0.15, 0.025, 0.15], axisbg='k')
        cb = pl.colorbar(sc, cax, ticks=[-limits[2], 0, limits[2]])
        cb.set_label(measure, color='w')
    pl.setp(pl.getp(cb.ax, 'yticklabels'), color='w')
    pl.draw()
    pl.show()
Ejemplo n.º 31
0
def plot_held_units(rec_dirs, held_df, save_dir, rec_names=None):
    '''Plot waveforms of held units side-by-side

    Parameters
    ----------
    rec_dirs : list of str
        full paths to recording directories
    held_df : pandas.DataFrame
        dataframe listing held units with columns matching the names of the
        recording directories or the given rec_names. Also colulmns:
            - unit : str, unit name
            - single_unit : bool
            - unit_type : str, unit_type
            - electrode : int
            - J3 : list of float, J3 values for the held unit
    save_dir : str, directory to save plots in
    rec_names : list of str (optional)
        abbreviated rec_names if any were used for held_df creation
        if not given, rec_names are assumed to be the basenames of rec_dirs
    '''
    if rec_names is None:
        rec_names = [os.path.basename(x) for x in rec_dirs]

    rec_labels = {x: y for x, y in zip(rec_names, rec_dirs)}

    print('\n----------\nPlotting held units\n----------\n')
    for idx, row in held_df.iterrows():
        n_subplots = 0
        units = {}
        for rn in rec_names:
            if not pd.isna(row.get(rn)):
                n_subplots += 1
                units[rn] = row.get(rn)

        if n_subplots == 0:
            continue

        single_unit = row['single_unit']
        if single_unit:
            single_str = 'single-unit'
        else:
            single_str = 'multi-unit'

        unit_type = row['unit_type']
        unit_name = row['unit']
        electrode = row['electrode']
        area = row['area']
        J3_vals = row['J3']
        J3_str = np.array2string(np.array(J3_vals), precision=3)
        print('Plotting Unit %s...' % unit_name)

        title_str = 'Unit %s\nElectrode %i: %s %s\nJ3: %s' % (
            unit_name, electrode, unit_type, single_str, J3_str)

        fig, fig_ax = plt.subplots(ncols=n_subplots, figsize=(20, 10))
        ylim = [0, 0]
        row_ax = []

        for ax, unit_info in zip(fig_ax, units.items()):
            rl = unit_info[0]
            u = unit_info[1]
            rd = rec_labels.get(rl)
            params = dio.params.load_params('clustering_params', rd)
            if params is None:
                raise FileNotFoundError('No dataset pickle file for %s' % rd)

            #waves, descriptor, fs = get_unit_waveforms(rd, x[1])
            waves, descriptor, fs = dio.h5io.get_raw_unit_waveforms(rd, u)
            waves = waves[:, ::10]
            fs = fs / 10
            time = np.arange(0, waves.shape[1], 1) / (fs / 1000)
            snapshot = params['spike_snapshot']
            t_shift = snapshot['Time before spike (ms)']
            time = time - t_shift
            mean_wave = np.mean(waves, axis=0)
            std_wave = np.std(waves, axis=0)
            ax.plot(time, mean_wave, linewidth=5.0, color='black')
            ax.plot(time,
                    mean_wave - std_wave,
                    linewidth=2.0,
                    color='black',
                    alpha=0.5)
            ax.plot(time,
                    mean_wave + std_wave,
                    linewidth=2.0,
                    color='black',
                    alpha=0.5)
            ax.set_xlabel('Time (ms)', fontsize=35)

            ax.set_title('%s %s\ntotal waveforms = %i' %
                         (rl, u, waves.shape[0]),
                         fontsize=20)
            ax.autoscale(axis='x', tight=True)
            plt.tick_params(axis='both', which='major', labelsize=32)

            if np.min(mean_wave - std_wave) - 20 < ylim[0]:
                ylim[0] = np.min(mean_wave - std_wave) - 20

            if np.max(mean_wave + std_wave) + 20 > ylim[1]:
                ylim[1] = np.max(mean_wave + std_wave) + 20

        for ax in row_ax:
            ax.set_ylim(ylim)

        fig_ax[0].set_ylabel('Voltage (microvolts)', fontsize=35)
        plt.subplots_adjust(top=.75)
        plt.suptitle(title_str)
        fig.savefig(os.path.join(save_dir, 'Unit%s_waveforms.png' % unit_name),
                    bbox_inches='tight')
        plt.close('all')
Ejemplo n.º 32
0
time_per_turn_seconds_nslice = computational_time_seconds_nslices / N_turns_done_nslices

# Figure parameters
fig_index = 0
fig_size = (12, 8)
axis_font = {'fontname': 'Arial', 'size': '24'}
axis_font_title = {'fontname': 'Arial', 'size': '20'}
labelsize_choice = 24
labelsize_legend = 24
line_width = 3.5

fig_index = fig_index + 1
fig = pl.figure(fig_index, figsize=fig_size)
pl.plot(n_slices_vect,
        time_per_turn_seconds_nslice,
        'o-',
        linewidth=line_width)
pl.ylim(bottom=0)
pl.xlabel('Slices', **axis_font)
pl.ylabel('Computational Time [s/Turn]', **axis_font)
pl.title(
    'ArcQuad  %s  Segments = %d  MPs/Slice = %d  e$^-$ MPs = %d' %
    (PyPICmode_tag, n_segments, macroparticles_per_slice, eMPs),
    **axis_font_title)
pl.tick_params(labelsize=labelsize_choice)
pl.grid(linestyle='dashed')
pl.savefig(folder_work + 'computational_time_nSlices.png', dpi=300)

pl.show()
def plot_held_units(rec_dirs, held_df, J3_df, save_dir):
    '''Plot waveforms of held units side-by-side

    Parameters
    ----------
    rec_dirs : list of str
        full paths to recording directories
    held_df : pandas.DataFrame
        dataframe listing held units with columns matching the names of the
        recording directories and a unit column with the unit names
    J3_df : pandas.DataFrame
        dataframe with same rows and columns as held df except the values are
        lists fo inter_J3 values for units that were found to be held
    save_dir : str, directory to save plots in
    '''

    print('\n----------\nPlotting held units\n----------\n')
    for idx, row in held_df.iterrows():
        unit_name = row.pop('unit')
        electrode = row.pop('electrode')
        area = row.pop('area')
        n_subplots = row.notnull().sum()
        idx = np.where(row.notnull())[0]
        cols = row.keys()[idx]
        units = row.values[idx]

        fig = plt.figure(figsize=(18, 6))
        ylim = [0, 0]
        row_ax = []

        for i, x in enumerate(zip(cols, units)):
            J3_vals = J3_df[x[0]][J3_df['unit'] == unit_name].values[0]
            J3_str = np.array2string(np.array(J3_vals), precision=3)
            ax = plt.subplot(1, n_subplots, i+1)
            row_ax.append(ax)
            rd = [y for y in rec_dirs if x[0] in y][0]
            params = get_clustering_parameters(rd)
            if params is None:
                raise FileNotFoundError('No dataset pickle file for %s' % rd)

            #waves, descriptor, fs = get_unit_waveforms(rd, x[1])
            waves, descriptor, fs = get_raw_unit_waveforms(rd, x[1])
            waves = waves[:, ::10]
            fs = fs/10
            time = np.arange(0, waves.shape[1], 1) / (fs/1000)
            snapshot = params['spike_snapshot']
            t_shift = snapshot['Time before spike (ms)']
            time = time - t_shift
            mean_wave = np.mean(waves, axis=0)
            std_wave = np.std(waves, axis=0)
            plt.plot(time, mean_wave,
                     linewidth=5.0, color='black')
            plt.plot(time, mean_wave - std_wave,
                     linewidth=2.0, color='black',
                     alpha=0.5)
            plt.plot(time, mean_wave + std_wave,
                     linewidth=2.0, color='black',
                     alpha=0.5)
            plt.xlabel('Time (ms)',
                       fontsize=35)
            if i==0:
                plt.ylabel('Voltage (microvolts)', fontsize=35)

            plt.title('%s %s\ntotal waveforms = %i, Electrode: %i\n'
                      'J3: %s, Single Unit: %i, RSU: %i, FS: %i'
                      % (x[0], x[1], waves.shape[0],
                         descriptor['electrode_number'],
                         J3_str,
                         descriptor['single_unit'],
                         descriptor['regular_spiking'],
                         descriptor['fast_spiking']),
                      fontsize = 20)
            plt.tick_params(axis='both', which='major', labelsize=32)

            if np.min(mean_wave - std_wave) - 20 < ylim[0]:
                ylim[0] = np.min(mean_wave - std_wave) - 20

            if np.max(mean_wave + std_wave) + 20 > ylim[1]:
                ylim[1] = np.max(mean_wave + std_wave) + 20

        for ax in row_ax:
            ax.set_ylim(ylim)

        plt.subplots_adjust(top=.7)
        plt.suptitle('Unit %s' % unit_name)
        fig.savefig(os.path.join(save_dir,
                                 'Unit%s_waveforms.png' % unit_name),
                    bbox_inches='tight')
        plt.close('all')
Ejemplo n.º 34
0
    def plot_hams(self):
        print("plotting normal hams")
        fig, ax = pylab.subplots(figsize=(self.fig_size, self.fig_size))
        box_font = self.box_font_size

        # axes labels
        xlabel = r"$d$"
        ylabel = "f"
        if self.protein == "Kinase":
            start = 120
            end = 230
            x_tick_range = np.arange(start, end, 20)
            pylab.xlim(start, end)
            
        all_freqs = dict()

        for label, seqs_file in self.vis_seqs.items():
            if label in self.skip:
                print("skipping ", label)
                continue
            if not self.which_models[label]:    # model is 'false' in the which_models{}, then continue
                continue
            label = self.label_dict[label]
            print("computing hams for:\t", label)
            seqs = loadSeqs(self.msa_dir + "/" + seqs_file, names=self.ALPHA)[0][0:self.keep_hams]
            h = histsim(seqs).astype(float)
            h = h/np.sum(h)
            all_freqs[label] = h
            rev_h = h[::-1]
            if label == "Target":
                if "nat" in self.synth_nat:
                    target_label = "Nat-Target"
                else:
                    target_label = "Synth-Target"
                line_style = "dashed"
                my_dashes = (1, 1)
                ax.plot(rev_h, linestyle=line_style, linewidth=self.line_width, dashes=my_dashes,
                    alpha=self.line_alpha, color=self.color_set[label], label=target_label, zorder=self.z_order[label])
            else:
                line_style = "solid"
                ax.plot(rev_h, linestyle=line_style, linewidth=self.line_width,
                    alpha=self.line_alpha, color=self.color_set[label], label=label, zorder=self.z_order[label])

        tvds = dict()
        print("all_freqs")
        print(all_freqs.keys())
        delete_key = ''
        save_value = ''
        for data_label, f in all_freqs.items():
            if 'arget' in data_label:
                save_value = f
                delete_key = data_label
        
        del all_freqs[delete_key]
        all_freqs["Target"] = save_value

        for data_label, f in all_freqs.items():
            if data_label != 'Target':
                tvds[data_label] = round(np.sum(np.abs(all_freqs['Target'] - f))/2, 4)

        print(tvds)
        y_tick_range = np.arange(0.0, 0.08, 0.02)
        pylab.ylabel(ylabel, fontsize=self.label_size)
        pylab.xlabel(xlabel, fontsize=self.label_size)
        pylab.xticks(x_tick_range, rotation=45)
        pylab.yticks(y_tick_range)
        pylab.tick_params(direction='in',axis='both', which='major', labelsize=self.tick_size, 
            length=self.tick_length, width=self.tick_width)
        #my_title = "Hamming Distance Distributions\n" + self.parent_dir_name
        file_name = "ham_" + self.name + "_" + self.synth_nat + "_" + self.which_size + ".pdf"
        #pylab.title(self.which_size, fontsize=self.title_size)
        pylab.tight_layout()
        pylab.legend(fontsize=self.tick_size-3, loc="upper left", frameon=False)
        save_name = self.output_dir + "/" + file_name
        print(save_name)
        pylab.savefig(save_name, dpi=self.dpi, format='pdf')
        pylab.close()
Ejemplo n.º 35
0
def parse_and_plot_ref(runfile, spectrum_file):
    fields = [('wl', 'f8'), ('gf', 'f8'), ('z', 'i'), ('istg', 'i'),
              ('chi', 'f8')]
    ref = N.loadtxt("ref.dat", dtype=fields)

    model = N.loadtxt(spectrum_file)

    mylist = parse_runsynow(runfile)
    numref = mylist['parms']['numref']
    an = []
    ai = []
    for x,y,z in zip(mylist['parms']['tau1'][:numref],\
                     mylist['parms']['an'][:numref],\
                     mylist['parms']['ai'][:numref]):
        if x > 0.:
            an.append(y)
            ai.append(z)

    ions_used = [z * 100 + istg for z, istg in zip(an, ai)]
    ref_ions = []
    for i in xrange(N.size(ref['wl'])):
        ref_ions.append(ref['z'][i] * 100 + ref['istg'][i])

    ref_index = []
    for ion in ions_used:
        ref_index.append(ref_ions.index(ion))

    pylab.interactive(True)

    # One can supply an argument to AutoMinorLocator to
    # specify a fixed number of minor intervals per major interval, e.g.:
    # minorLocator = AutoMinorLocator(2)
    # would lead to a single minor tick between major ticks.

    minorLocator = AutoMinorLocator()

    golden = (pylab.sqrt(5) + 1.) / 2.

    figprops = dict(figsize=(8., 8. / golden),
                    dpi=128)  # Figure properties for single and stacked plots
    # figprops = dict(figsize=(16., 8./golden), dpi=128)    # Figure properties for side by sides
    adjustprops = dict(left=0.15,
                       bottom=0.1,
                       right=0.90,
                       top=0.93,
                       wspace=0.2,
                       hspace=0.2)  # Subp

    fig = pylab.figure(1, **figprops)  # New figure
    fig.clf()
    fig.subplots_adjust(**adjustprops)  # Tunes the subplot layout

    ax1 = fig.add_subplot(1, 1, 1)

    my_funcs.bold_labels(ax1)

    p1, = ax1.plot(model[:, 0], model[:, 1], linewidth=2.0)
    ax1.set_ylabel(r'$F_\lambda$', fontsize=14)
    ax1.set_xlabel(r'$\lambda\ (\AA)$', fontsize=14)
    # ax1.set_xlim([0.,60.])
    # ax1.set_ylim([10.**41.4,10.**43.5])
    # ax1.set_yscale('log')
    # ax1.legend([p1,p2,p3,p4],['Day 10','Day 15','Day 25','Day 50'],frameon=False)
    ax1.xaxis.set_minor_locator(minorLocator)

    pylab.tick_params(which='both', width=2)
    pylab.tick_params(which='major', length=7)
    pylab.tick_params(which='minor', length=4, color='r')

    #ax1.xaxis.grid(True,which='minor')
    ax1.xaxis.grid(True, which='both')

    wl_ref = []
    f_ref = []
    ymin, ymax = ax1.get_ybound()
    for i in ref_index:
        wl_ref.append([10. * ref['wl'][i], 10. * ref['wl'][i]])
        ihelp = N.abs(model[:, 0] - 10. * ref['wl'][i]).argmin()
        yhelp = model[ihelp, 1]
        f_ref.append([ymin, yhelp])

    for x, y in zip(wl_ref, f_ref):
        ax1.plot(x, y, lw=2)

    fields = [('Z','i'),('A','f8'),('Name','S13'),('sym','S4'),('MP','f8'),\
              ("BP",'f8'),('rho','f8'),('crust','f8'),('year','i'),\
              ('group','i'), ('config','S23'), ('chiion',"f8")]

    # labels = N.loadtxt("periodic_table.dat",skiprows=1,delimiter=',',dtype=fields)
    labels = N.genfromtxt("periodic_table.dat",
                          skip_header=1,
                          delimiter=',',
                          dtype=None)

    syms = []
    for x in labels['f3']:
        syms.append(x.replace(" ", ""))

    ref_Zs = []
    for z in labels['f0']:
        ref_Zs.append(z)

    sym_indices = []
    for z in an:
        sym_indices.append(ref_Zs.index(z))

    spect_notation = [
        "I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX", "X"
    ]
    text_labels = []
    for i, j in enumerate(sym_indices):
        help = syms[j] + " " + spect_notation[ai[i]]
        text_labels.append(help)

    for x, y, l in zip(wl_ref, f_ref, text_labels):
        ax1.text(x[0], min(y[1] * 1.08, ymax), l, fontsize=8)
Ejemplo n.º 36
0
def PLOTdetrendPOSITIONfluxFULL(time, flux, position, TCK, **kwargs):
    """
    Routine going with detrendPOSITIONflux to visualize the detrending of the photometry for the instrumental correction between position and flux of BRITE photometry. 
    
    Returns: Figure with -hopefully- enough diagnostics to determine the strength / weaknessess of the detrending
    
    @param flux: flux measurements [adu]
    @type flux: numpy array of length N
    @param position: CCD position measurements along a position axis [pixel]
    @type position: numpy array of length N
    @param TCK: spline tck for the favored fit
    @type TCK: tuple
    """

    # Calculating the corrections
    # ---------------------------
    fluxCORRECTION = scInterp.splev(position, TCK)

    # Setting up the figure window
    # ----------------------------
    figPOScorr = pl.figure(figsize=(16, 16))
    gsPOScorr = gridspec.GridSpec(2,
                                  2,
                                  height_ratios=[1, 1],
                                  width_ratios=[3, 2])
    axTIMEorig = figPOScorr.add_subplot(gsPOScorr[0,
                                                  0])  # Initial flux with time
    axTIMEcorr = figPOScorr.add_subplot(
        gsPOScorr[1, 0], sharex=axTIMEorig,
        sharey=axTIMEorig)  # Corrected flux with time
    axPOSorig = figPOScorr.add_subplot(
        gsPOScorr[0, 1], sharey=axTIMEorig)  # Initial flux with position
    axPOScorr = figPOScorr.add_subplot(
        gsPOScorr[1, 1], sharex=axPOSorig,
        sharey=axTIMEorig)  # Corrected flux with position

    # Panels related to time
    # ----------------------
    axTIMEorig.plot(time, flux, 'k.', ms=6, alpha=.4)
    pl.tick_params('both', length=10, width=2, which='major')
    pl.tick_params('both', length=10, width=1, which='minor')
    pyplot.locator_params(axis='x', nbins=5)
    pyplot.locator_params(axis='y', nbins=5)
    axTIMEorig.set_title('Original')
    axTIMEorig.set_ylabel('Flux [adu]')

    axTIMEcorr.plot(time, flux - fluxCORRECTION, 'k.', ms=6, alpha=.4)
    pl.tick_params('both', length=10, width=2, which='major')
    pl.tick_params('both', length=10, width=1, which='minor')
    pyplot.locator_params(axis='x', nbins=5)
    pyplot.locator_params(axis='y', nbins=5)
    axTIMEcorr.set_title('After correction')
    axTIMEcorr.set_ylabel('Flux [adu]')
    axTIMEcorr.set_ylabel('Time [d]')
    # Panels related to position
    # --------------------------------------
    axPOSorig.plot(position, flux, 'k.', ms=6, alpha=.4)
    axPOSorig.plot(position, fluxCORRECTION, 'r.', ms=6, alpha=.8)
    pl.tick_params('both', length=10, width=2, which='major')
    pl.tick_params('both', length=10, width=1, which='minor')
    pyplot.locator_params(axis='x', nbins=5)
    pyplot.locator_params(axis='y', nbins=5)
    axPOSorig.set_title('Correction')

    axPOScorr.plot(position, flux - fluxCORRECTION, 'k.', ms=6, alpha=.4)
    pl.tick_params('both', length=10, width=2, which='major')
    pl.tick_params('both', length=10, width=1, which='minor')
    pyplot.locator_params(axis='x', nbins=5)
    pyplot.locator_params(axis='y', nbins=5)
    axPOScorr.set_title('Residuals correction')
    axPOScorr.set_ylabel('CCD position [pixel]')

    # Settings
    # --------
    axTIMEorig.set_xlim([np.min(time), np.max(time)])
    axTIMEorig.set_ylim([np.min(flux) * 1.2,
                         np.max(flux) * 1.2])
    axPOSorig.set_xlim([np.min(position) + 0.1, np.max(position) + 0.1])
    axTIMEcorr.set_xlabel('Time [d]')
    axTIMEorig.set_ylabel('Flux [adu]')
    axTIMEcorr.set_ylabel('Flux [adu]')
    axPOScorr.set_xlabel('Position [pixel]')

    return
Ejemplo n.º 37
0
                  color=colours[k],
                  label="%s (%d deg^2)" % (labels[k], sarea[k]),
                  marker='.')
    #line[0].set_dashes(linestyle[k])

for i in range(kc.size):
    print "%03d -- %3.3e" % (i, kc[i])

# Title is k value of k bin
P.title("k = %3.3e Mpc$^{-1}$" % kc[kbin])

P.legend(loc='upper right', prop={'size': 'medium'}, frameon=False)

P.tick_params(axis='both',
              which='major',
              labelsize=20,
              size=8.,
              width=1.5,
              pad=8.)
P.tick_params(axis='both', which='minor', labelsize=20, size=5., width=1.5)

P.xlabel(r"$z$", fontdict={'fontsize': 'x-large'})
P.ylabel(r"$\Delta P / P$", fontdict={'fontsize': 'x-large'})

P.ylim((5e-3, 5e-1))
P.yscale('log')

P.gcf().set_size_inches(8., 6.)
P.tight_layout()
P.savefig("pk_redshift_k%3.3e.pdf" % kc[kbin], transparent=True)
print "Output: pk_redshift_k%3.3e.pdf" % kc[kbin]
#P.show()
#loss = K.mean(layer_output[:, filter_index, :, :])

## compute the gradient of the input picture wrt this loss
#grads = K.gradients(loss, input_img)[0]

## normalization trick: we normalize the gradient
#grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5)

## this function returns the loss and grads given the input picture
#iterate = K.function([input_img], [loss, grads])

## we start from a gray image with some noise
#input_img_data = np.random.random(((1,) + input_shape)) * 20 + 128.
## run gradient ascent for 20 steps
#for i in range(20):
#    loss_value, grads_value = iterate([input_img_data])
#    input_img_data += grads_value * step

# Visualize weights
W = DCNN_flatwindow.layers[0].W.get_value(borrow=True)
W = np.squeeze(W)
print("W shape : ", W.shape)

pl.figure(figsize=(15, 15))
pl.title('conv1 weights')
nice_imshow(pl.gca(), make_mosaic(W, 6, 3), cmap=cm.binary)
pl.tick_params(axis='y', labelleft='off')
pl.tight_layout()

pl.savefig('C://DATA//koumura birds//Bird1//bird1_conv1_1_kernel_weights.eps')
Ejemplo n.º 39
0
def find_time_points(t=0,
                     t_want=0,
                     i_plot=0,
                     i_test=0,
                     i_warn=1,
                     method='even'):
    """
    Find time index for an array of time points on time array t
    """
    if i_test == 1:
        print('ueven test data used')
        ind = numpy.linspace(-3, 2.2, 343)
        t = 10**ind
        t_want = numpy.array([9, 0.1, 0.05, 1.732, 12])
        i_plot = 1
    elif i_test == 2:
        t = numpy.linspace(0, 5, 50000)
        t_want = numpy.array([1.111, 3.222])
        i_plot = 1

    # convert a pure number t_want to a list with length and attribute
    if not (type(t_want) == list):
        t_want = [t_want]

    if numpy.min(t_want) < t[0] or numpy.max(t_want) > t[-1]:
        print('t[0]=', t[0])
        print('t[len(t)-1]', t[len(t) - 1])
        raise Exception('Error: t_want goes out the range of t')
    # sum up the difference of time difference to judge whether it is even.
    dt_sum = numpy.sum(numpy.diff(numpy.diff(t)))
    if dt_sum < 10**-10 or method == 'even':
        dt = (t[3] - t[0]) / 3.0
        i_want = numpy.round((t_want - t[0]) / dt)
        # convert i_want to python style index that start from 0
        i_want = i_want - 1
    elif dt_sum > 10**-10 or method == 'uneven':
        if i_warn == 1 and method == 'even':
            print('Sum of ddt: ', dt_sum)
            print('Time array is not even, slow loop method used!')
        # i_want = numpy.ones(len(t_want))*-1
        i_want = numpy.zeros(len(t_want))
        for i in range(0, len(t_want)):
            for j in range(0, len(t)):
                if t_want[i] >= t[j] and t_want[i] < t[j + 1]:
                    i_want[i] = j
    # convert index i_want to integers
    i_want = numpy.int_(i_want)
    if i_plot == 1:
        print('t_want: ', t_want)
        print('i_want: ', i_want)
        pylab.figure()
        x = numpy.arange(0, t.shape[0], 1)
        pylab.plot(x, t, '-o', color='blue', markersize=3)
        pylab.hold('on')
        pylab.plot(x[i_want], t[i_want], 'o', color='red')
        pylab.xlabel('index')
        pylab.ylabel('time (s)')
        pylab.grid('on')
        pylab.minorticks_on()
        pylab.tick_params(which='major',
                          labelsize=10,
                          width=2,
                          length=10,
                          color='black')
        pylab.tick_params(which='minor', width=1, length=5)
    return i_want
Ejemplo n.º 40
0
def uniqHostsVsJobs(df):
    '''
	roi_df = df[['totalCores', 'Thrashing']]
	roi_df = roi_df[(roi_df['Thrashing'] == True)]
	
	totalCores = (df['totalCores'].values.tolist())
	thrashingCores = roi_df['totalCores'].values.tolist()

	ziplist = []
	for coreNo in list(set(totalCores)):
		totFltCorePcnt	= (float(thrashingCores.count(coreNo))/float(totalCores.count(coreNo)))*100
		totCorePcnt	= (float(totalCores.count(coreNo))/float(len(totalCores)))*100
		
		pcnt = (totCorePcnt * totFltCorePcnt)/100.00
		ziplist.append((coreNo, totCorePcnt, pcnt, totCorePcnt-pcnt))
	coreNo, totalpcnt, bottompcnt, topPcnt = zip(*sorted(ziplist, key=lambda x: x[1], reverse=True))

	noOfBars = 30
	filename = "500TTotalCoresVSJobs_Percentages.png"
	fig, ax = mplt.subplots()
	indices = np.arange(0, 0.3*noOfBars, 0.3)
	bottomBar = ax.bar(indices, bottompcnt[:noOfBars], bar_width, color=blue, linewidth=outlinewgt[-1], hatch='////')
	topBar    = ax.bar(indices, topPcnt[:noOfBars], bar_width, bottom=bottompcnt[:noOfBars], color=lightblue, linewidth=outlinewgt[-1], hatch="////")

	ax.set_xticks(indices + 0.5*(bar_width))
	ax.set_xticklabels(coreNo[:noOfBars])
	ax.set_xlabel('Total Cores', fontsize=labelFontSZ, fontweight=labelFontWT)
	ax.set_ylabel('% of jobs', fontsize=labelFontSZ, fontweight=labelFontWT)

        ax.text(ImgNoteX, ImgNoteY, 'Threshold: Peak major page fault > 500', \
                horizontalalignment='center', \
                verticalalignment='center', \
                transform=ax.transAxes, fontsize=ticksFontSZ, fontweight=labelFontWT)

	mplt.xticks(fontsize=ticksFontSZ, rotation='vertical')	
	mplt.yticks(fontsize=ticksFontSZ)	
        fig = matplotlib.pyplot.gcf()
	fig.set_size_inches(ImgWidth, ImgHeight)
	mplt.legend( (bottomBar[1], topBar[0]), ("% of Job > Threshold", "% of Jobs < Threshold"))
	mplt.savefig(sys.argv[2]+"/"+ filename, format=ImgFormat, dpi=ImgDPI, bbox_inches=ImgProp)
	'''

    # Second plot
    roi_df = df[['uniqHosts', 'Thrashing']]
    totalCores = (df['uniqHosts'].values.tolist())
    roi_df = roi_df[(roi_df['Thrashing'] == True)]
    thrashingCores = roi_df['uniqHosts'].values.tolist()

    ziplist = []
    for coreNo in list(set(totalCores)):
        totFltCoreCnt = thrashingCores.count(coreNo)
        totCoreCnt = totalCores.count(coreNo)
        ziplist.append(
            (coreNo, totCoreCnt, totFltCoreCnt, totCoreCnt - totFltCoreCnt))
    coreNo, totalCnt, bottomCnt, topCnt = zip(
        *sorted(ziplist, key=lambda x: x[1], reverse=True))

    noOfBars = 10
    filename = "500TUniqHostsVSJobs_RawNumbers.png"
    fig, ax = mplt.subplots()
    indices = np.arange(0, 0.3 * noOfBars, 0.3)

    topBar    = ax.bar(indices, totalCnt[:noOfBars], bar_width, \
         color=yellow, linewidth=outlinewgt[-1])#hatch="/")
    bottomBar = ax.bar(indices, bottomCnt[:noOfBars], 0.75*bar_width, \
         color=red, linewidth=outlinewgt[-1])#hatch='/')

    for i in range(2):
        labelBar.labelBar(ax, topBar[i], None, \
         str(int(float(totalCnt[i])*100.00/len(totalCores)))+'%', 0.03, 0)
        labelBar.labelBar(ax, bottomBar[i], None, \
          str(int(float(bottomCnt[i])*100.00/totalCnt[i]))+'%', 0.0, 0)

    ax.set_xticks(indices + 0.5 * (bar_width))
    ax.set_xticklabels(coreNo[:noOfBars])
    ax.set_xlabel('No. of nodes requested',
                  fontsize=labelFontSZ,
                  fontweight=labelFontWT)
    ax.set_ylabel('No of jobs', fontsize=labelFontSZ, fontweight=labelFontWT)

    plt.tick_params(
        axis='both',  # changes apply to the x-axis
        which='both',  # both major and minor ticks are affected
        bottom='off',  # ticks along the bottom edge are off
        top='off',  # ticks along the top edge are off
        right='off',  # ticks along the left edge are off
        left='off')  # ticks along the right edge are off
    #ax.text(ImgNoteX, ImgNoteY, 'Threshold: Peak major page fault > 500', \
    #        horizontalalignment='center', \
    #        verticalalignment='center', \
    #        transform=ax.transAxes, fontsize=ticksFontSZ, fontweight=labelFontWT)

    mplt.xticks(fontsize=ticksFontSZ)
    mplt.yticks(fontsize=ticksFontSZ)
    fig = matplotlib.pyplot.gcf()
    fig.set_size_inches(ImgWidth, ImgHeight)
    mplt.legend((bottomBar[0], topBar[0]),
                ("No of jobs > Threshold", "No of jobs"))
    mplt.savefig(sys.argv[2] + "/" + filename,
                 format=ImgFormat,
                 dpi=ImgDPI,
                 bbox_inches=ImgProp)
    '''
#Makes plots of S_lambda masked model

#print gc_result
print gc_result_masked_sl
for a in gc_result_masked_sl.median.keys():
    setattr(model,a,gc_result_masked_sl.median[a])

sl_w,sl_f = model()

#for a in gc_result.median.keys():
#    setattr(model,a,gc_result.median[a])

sl_unmasked_w,sl_unmasked_f = model()

plt.tick_params(axis='both', which='major', labelsize=11)

plt.plot(w/(unmasked_median_fits['vrad_2']/3e5+0.0), starspectrum35.flux.value, label="Data")
'''
plt.plot(w/(unmasked_median_fits['vrad_2']/3e5+1.0),f,label="Unmasked model with best fit unmasked values")

plt.plot(sl_w/(gc_result_masked_sl.median['vrad_2']/3e5+1.0),sl_f-0.5,label="Masked model with best fit masked values")

plt.plot(sl_w/(gc_result_masked_sl.median['vrad_2']/3e5+1.0),masked_data_sl.flux.value-sl_f,label='Masked Model-Masked Data Residuals')

'''
plt.plot(w/(unmasked_median_fits['vrad_2']/3e5+1.0),f,label="Best Fit Model (No mask)")

#plt.plot(sl_w/(gc_result_masked_sl.median['vrad_2']/3e5+1.0),sl_f-0.5,label="Masked model with best fit masked values")

#plt.plot(w/(gc_result_masked_sl.median['vrad_2']/3e5+1.0),starspectrum35.flux.value-f,label='Masked Model-Masked Data Residuals')
Ejemplo n.º 42
0
#--setting y-axis range
pl.ylim(ylow, yhigh)
pl.yticks(np.linspace(ylow, tick_high, num_ticks, endpoint=True))
margin = bar_width + (1 - len(labels) * bar_width)
#-- setting x-axis
pl.xlim(side_margin - margin, len(data) - side_margin)
if len(xnote.strip()) != 0:
    pl.xlabel(xnote)

#--adding minor ticks, one tick every 0.02 unit
#ml = MultipleLocator(10)
#pl.axes().yaxis.set_minor_locator(ml)
#--drawing lines for major and minor ticks
#pl.grid(True)
pl.axes().yaxis.grid(b=True, which='major', color='k', linestyle='--')
#pl.axes().yaxis.grid(b=True, which='minor', color=(0.5,0.5,0.5), linestyle=':')
#--setting the tick marks
pl.xticks(np.arange(len(data)) + bar_width * 0.5 * (NUM_BARS - 1),
          data[headers[0]],
          rotation=rotation_angle)
pl.tick_params(top="off")
pl.tick_params(bottom="off")

#pl.show()
#pl.savefig(datafile + ".eps", format='eps', dpi=1000, bbox_inches='tight')
pl.savefig(datafile + "." + figure_f,
           format=figure_f,
           dpi=1000,
           bbox_inches='tight')
pl.close()
Ejemplo n.º 43
0
         U[:, -1, 0],
         label='Final Mass Density',
         color=tableau20[0],
         lw=3)
plt.plot(xPoints,
         U[:, 0, 1],
         label='Initial Momentum Density',
         color=tableau20[3],
         lw=3)
plt.plot(xPoints,
         U[:, -1, 1],
         label='Final Momentum Density',
         color=tableau20[2],
         lw=3)
plt.plot(xPoints,
         U[:, 0, 2],
         label='Initial Energy Density',
         color=tableau20[5],
         lw=3)
plt.plot(xPoints,
         U[:, -1, 2],
         label='Final Energy Density',
         color=tableau20[4],
         lw=3)
plt.title('Evolution of the Sod Tube at t=' + str(tMax), fontsize=24)
plt.xlabel('X Position', fontsize=18)
plt.ylabel('Conserved Quantity', fontsize=18)
plt.tick_params(labelsize=14)
plt.legend(loc='upper right')
plt.show()
Ejemplo n.º 44
0
def PLOTdetrendPOSITIONfluxDIAGinformCRIT(flux, position, AICtck, BICtck,
                                          **kwargs):
    """
    Routine going with detrendPOSITIONflux to visualize diagnostics in case the AIC and BIC do not favor the same fit.
    
    Returns: Figure with -hopefully- enough diagnostics to determine the strength / weaknessess of the detrending
    
    @param flux: flux measurements [adu]
    @type flux: numpy array of length N
    @param position: CCD position measurements along a position axis [pixel]
    @type position: numpy array of length N
    @param AICtck: spline tck for the favored fit by the AIC
    @type AICtck: tuple
    @param BICtck: spline tck for the favored fit by the BIC
    @type BICtck: tuple
    """

    # Calculating the corrections
    fluxCORRECTIONaic = scInterp.splev(position, AICtck)
    fluxCORRECTIONbic = scInterp.splev(position, BICtck)

    # Setting up the figure window
    # ----------------------------
    figDIAGN = pl.figure(figsize=(16, 16))
    axAIC = figDIAGN.add_subplot(221)
    axBIC = figDIAGN.add_subplot(222, sharey=axAIC, sharex=axAIC)
    axAICres = figDIAGN.add_subplot(223, sharey=axAIC, sharex=axAIC)
    axBICres = figDIAGN.add_subplot(224, sharey=axAIC, sharex=axAIC)
    # --
    axAIC.plot(position, flux, 'k.', ms=6, alpha=.4)
    axAIC.plot(position, fluxCORRECTIONaic, 'r.', ms=8, alpha=.6)
    pl.tick_params('both', length=10, width=2, which='major')
    pl.tick_params('both', length=10, width=1, which='minor')
    pyplot.locator_params(axis='x', nbins=5)
    pyplot.locator_params(axis='y', nbins=5)
    axAIC.set_title('best AIC fit')
    axAIC.set_ylabel('Flux [adu]')
    # --
    axAICres.plot(position, flux - fluxCORRECTIONaic, 'k.', ms=6, alpha=.4)
    pl.tick_params('both', length=10, width=2, which='major')
    pl.tick_params('both', length=10, width=1, which='minor')
    pyplot.locator_params(axis='x', nbins=5)
    pyplot.locator_params(axis='y', nbins=5)
    axAICres.set_ylabel('Res. Flux [adu]')
    # --
    axBIC.plot(position, flux, 'k.', ms=6, alpha=.4)
    axBIC.plot(position, fluxCORRECTIONbic, 'r.', ms=8, alpha=.6)
    pl.tick_params('both', length=10, width=2, which='major')
    pl.tick_params('both', length=10, width=1, which='minor')
    pyplot.locator_params(axis='x', nbins=5)
    pyplot.locator_params(axis='y', nbins=5)
    axBIC.set_title('best BIC fit')
    # --
    axBICres.plot(position, flux - fluxCORRECTIONbic, 'k.', ms=6, alpha=.4)
    pl.tick_params('both', length=10, width=2, which='major')
    pl.tick_params('both', length=10, width=1, which='minor')
    pyplot.locator_params(axis='x', nbins=5)
    pyplot.locator_params(axis='y', nbins=5)

    # Settings
    # --------
    axAIC.set_xlim([np.min(position) - 0.1, np.max(position) + 0.1])
    axAICres.set_xlabel('CCD position [pixel]')
    axBICres.set_xlabel('CCD position [pixel]')

    return
Ejemplo n.º 45
0
# plot the wave
time = np.arange(0, nframes) * (1.0 / framerate)
time2 = np.arange(0, len(volume11)) * (frameSize - overLap) * 1.0 / framerate
pl.figure(figsize=(6, 2.5))
pl.plot(time, waveData)
pl.ylabel("Amplitude", fontsize=11)
pl.xlabel('Time(s)', fontsize=11)
pl.ylim(-1, 1)
pl.xticks([
    0.025, 0.100, 0.250, 0.365, 0.450, 0.540, 0.680, 0.939, 1.024, 1.150,
    1.270, 1.350, 1.408, 1.507, 1.600
], [
    0.025, '0.100', '0.250', 0.365, '0.450', '0.540', '0.680', 0.939, 1.024,
    '1.150', '1.270', '1.350', 1.408, 1.507, '1.600'
])
pl.tick_params(axis='x', rotation=50)

pl.plot([0.025, 0.025], [-1, 1], linestyle='dashed', color='r')
pl.plot([0.1, 0.1], [-1, 1], linestyle='dashed', color='r')
pl.plot([0.25, 0.25], [-1, 1], linestyle='dashed', color='r')
pl.plot([0.365, 0.365], [-1, 1], linestyle='dashed', color='r')
pl.plot([0.45, 0.45], [-1, 1], linestyle='dashed', color='r')
pl.plot([0.54, 0.54], [-1, 1], linestyle='dashed', color='r')
pl.plot([0.68, 0.68], [-1, 1], linestyle='dashed', color='r')
pl.plot([0.939, 0.939], [-1, 1], linestyle='dashed', color='r')
pl.plot([1.024, 1.024], [-1, 1], linestyle='dashed', color='r')
pl.plot([1.15, 1.15], [-1, 1], linestyle='dashed', color='r')
pl.plot([1.27, 1.27], [-1, 1], linestyle='dashed', color='r')
pl.plot([1.35, 1.35], [-1, 1], linestyle='dashed', color='r')
pl.plot([1.408, 1.408], [-1, 1], linestyle='dashed', color='r')
pl.plot([1.507, 1.507], [-1, 1], linestyle='dashed', color='r')
Ejemplo n.º 46
0
def imag_proc(file_name, num_of_tx, camera):
    BLACK = (0, 0, 0)
    WHITE = (255, 255, 255)
    BLUE = (255, 0, 0)
    GREEN = (0, 255, 0)
    RED = (0, 0, 255)
    YELLOW = (0, 255, 255)
    TEAL = (255, 255, 0)
    MAGENTA = (255, 0, 255)

    if 'PICS' in os.environ:
        debug = True
    else:
        debug = False

    if 'DEBUG' in os.environ and int(os.environ['DEBUG']) >= 3:
        logger.warn("DEBUG=3 doesn't save pictures any more")
        logger.warn(
            "I split saving pictures out to its own independent setting")
        logger.warn("Use PICS=1 to save intermediate images")

    if debug:
        global dbg_step
        dbg_step = 0

    # Load image and convert to grayscale
    logger.start_op("Loading image")
    gray_image = cv2.imread(file_name, cv2.IMREAD_GRAYSCALE)
    logger.debug('gray_image.shape = {}'.format(gray_image.shape))
    if debug:
        dbg_save('gray_image', gray_image)
    logger.end_op()

    # Handle orientation
    logger.start_op("Normalizing image rotation")
    if gray_image.shape[1] > gray_image.shape[0]:
        logger.debug("Rotated image")
        gray_image = numpy.rot90(gray_image, 3)
    else:
        logger.debug("No rotation")
    if debug:
        dbg_save('gray_image_rotated', gray_image)
    logger.debug('gray_image.shape = {}'.format(gray_image.shape))
    logger.end_op()

    # Blur image
    logger.start_op("Applying blur")
    #m2 = cv2.GaussianBlur(gray_image, (31,31), 0)
    m2 = cv2.blur(gray_image, (50, 50))  # faster and good enough
    #m2 = cv2.blur(gray_image, (150,150)) # faster and good enough
    if debug:
        dbg_save('after_blur', m2)
    logger.debug('m2.shape = {}'.format(m2.shape))
    logger.end_op()

    # Replace manual threshold with more efficient OTSU filter
    logger.start_op("Threshold image")
    #threshold, thresholded_img = cv2.threshold(m2, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
    thresholded_img = cv2.adaptiveThreshold(m2, 255,
                                            cv2.ADAPTIVE_THRESH_MEAN_C,
                                            cv2.THRESH_BINARY, 101, 2)
    if debug:
        dbg_save('thresholded_img', thresholded_img)
    logger.end_op()

    # Find and label disjoint sets of pixels (each transmitter blob)
    logger.start_op("Locate transmitters")

    # opencv3.0 has a connectedComponents API but that's sadly not released yet
    #ret, markers = cv2.connectedComponents(thresholded_img)

    # We solve this by drawing an outline ("contour") around each blob
    contours, heirarchy = cv2.findContours(thresholded_img, cv2.RETR_LIST,
                                           cv2.CHAIN_APPROX_SIMPLE)

    if debug:
        # drawContours draws contours on the supplied image, need a copy
        contour_image = gray_image.copy()
        cv2.drawContours(contour_image, contours, -1, 255, 3)
        dbg_save('contours', contour_image)

        #contours_kept_image = gray_image.copy()
        contours_kept_image = cv2.imread(file_name, cv2.IMREAD_COLOR)

        # Draw the center point; useful for eyeballing calibration
        kept_center = (contours_kept_image.shape[1] / 2,
                       contours_kept_image.shape[0] / 2)
        cv2.circle(
            contours_kept_image,
            kept_center,
            5,  # radius
            RED,  # color
            -1  # fill circle
        )
        cv2.circle(
            contours_kept_image,
            (kept_center[0], kept_center[1] + 20),
            5,  # radius
            RED,  # color
            -1  # fill circle
        )
        cv2.circle(
            contours_kept_image,
            (kept_center[0] + 20, kept_center[1]),
            5,  # radius
            RED,  # color
            -1  # fill circle
        )
        cv2.circle(
            contours_kept_image,
            (kept_center[0] + 40, kept_center[1]),
            5,  # radius
            RED,  # color
            -1  # fill circle
        )

    # And then fitting a circle to that contour
    centers = []
    radii = []
    for contour in contours:
        center, radius = cv2.minEnclosingCircle(contour)
        center = map(int, center)
        radius = int(radius)
        if radius <= 33:
            logger.debug(
                'Skipping transmitter at {} with small radius ({} pixels)'.
                format(center, radius))
            continue
        # For some reason minEnclosingCircle flips x and y?
        center = (center[1], center[0])
        #assert thresholded_img[center[0], center[1]] == 1, 'Center of blob is not lit?'

        reject = False
        for pt in contour:
            # List of lists? Maybe some contour structure could have blob points?
            assert len(pt) == 1
            pt = pt[0]
            # More x,y flip?
            if \
            pt[1] < 10 or \
            pt[0] < 10 or \
            pt[1] > (thresholded_img.shape[0]-10) or \
            pt[0] > (thresholded_img.shape[1]-10):
                reject = True
                logger.debug("Bad edge point: {}".format(pt))
                break

        if reject:
            logger.debug('Rejecting edge contour at {}'.format(center))
            continue

        contour_area = cv2.contourArea(contour)
        circle_area = math.pi * radius**2
        logger.debug(
            'Transmitter area {:0.1f}. Radius {} px. Contour area {}.  %age {:0.1f}'
            .format(circle_area, radius, contour_area,
                    (contour_area / circle_area) * 100))
        if (contour_area / circle_area) < .5:
            logger.debug('Rejecting non-circular contour at {}'.format(center))
            continue
        centers.append(center)
        radii.append(radius)

        if debug:
            cv2.drawContours(contours_kept_image, [
                contour,
            ], -1, TEAL, 3)

    if debug:
        dbg_save('contours-kept', contours_kept_image)

    number_of_transmitters = len(centers)
    #assert number_of_transmitters >= 3, 'not enough transmitters'
    logger.end_op()

    # Compute transmitter frequencies
    logger.start_op("Computing transmitter frequencies")

    Fs = 1 / camera.rolling_shutter_r
    T = 1 / Fs
    # 2**14 good balance of speed / resolution [5~10 hz for small sample set]
    NFFT = 2**14
    gain = 5

    estimated_frequencies = []
    window_size = 100

    average_window = 40
    avg_threshold = 20

    light_circles = gray_image.copy()

    for i in xrange(number_of_transmitters):
        try:
            row_start = max(0, centers[i][0] - radii[i])
            row_end = min(gray_image.shape[0] - 1, centers[i][0] + radii[i])
            column_start = max(0, centers[i][1] - radii[i])
            column_end = min(gray_image.shape[1] - 1, centers[i][1] + radii[i])

            #Slice image around current center and sum across all rows
            image_slice = gray_image[row_start:row_end,
                                     column_start:column_end]
            image_slice_mean = numpy.mean(image_slice)
            image_row = numpy.sum(image_slice, axis=0)

            #Remove any DC component
            image_row = image_row - numpy.mean(image_row)

            #Apply window
            y = image_row * numpy.hamming(image_row.shape[0])

            #Take FFT
            L = len(y)
            Y = numpy.fft.fft(y * gain, NFFT) / float(L)
            f = Fs / 2 * numpy.linspace(0, 1, NFFT / 2.0 + 1)
            Y_plot = 2 * abs(Y[0:NFFT / 2.0 + 1])

            #TODO: Apply heuristic to determine SNR

            if debug:
                pylab.subplot(number_of_transmitters, 2, 2 * i + 1)
                pylab.title(str(centers[i]), size='xx-small')
                pylab.ylim([-13000, 13000])
                pylab.yticks([-13000, 0, 13000])
                pylab.tick_params(labelsize=4)
                pylab.plot(y)

            ##Improve center by thresholding image and obtaining minimum enclosing circle
            #_, image_slice_thresh = cv2.threshold(image_slice, image_slice_mean*1.5, 1, cv2.THRESH_BINARY)
            #image_slice_thresh_contours, _ = cv2.findContours(image_slice_thresh, cv2.RETR_LIST,
            #	cv2.CHAIN_APPROX_SIMPLE)
            #image_slice_thresh_contours = numpy.vstack(image_slice_thresh_contours)
            #center, radius = cv2.minEnclosingCircle(image_slice_thresh_contours)
            #center = map(int, center)
            #radius = int(radius)
            #center = (center[1] + row_start, center[0] + column_start)
            #cv2.circle(light_circles, (center[1], center[0]), radius + 3, WHITE, 3)
            #centers[i] = center
            #radii[i] = radius

            #Find the best fit for the largest circle
            radius = int(image_slice.shape[0] / 2)
            first_time = True
            max_val = 0
            circle_area = 0
            max_loc = (0, 0)
            while radius > 0:
                last_radius = radius
                last_max_loc = max_loc
                last_max_val = max_val
                last_circle_area = circle_area

                circle_template = numpy.zeros((radius * 2 + 1, radius * 2 + 1),
                                              type(image_slice[0][0]))
                cv2.circle(circle_template, (radius, radius), radius, WHITE,
                           -1)
                res = cv2.matchTemplate(image_slice, circle_template,
                                        cv2.TM_CCORR)
                min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
                circle_area = math.pi * math.pow(radius, 2)
                #Continue to decrease the circle size until more than 10% of the remaining pixels
                #print('{} {}'.format(max_val, last_max_val))
                if first_time or max_val > last_max_val * (
                    (.4 * circle_area + .6 * last_circle_area) /
                        last_circle_area):
                    first_time = False
                    radius = radius - 1
                else:
                    #print('GOT HERE')
                    radii[i] = last_radius
                    centers[i] = (row_start + last_max_loc[1] + last_radius +
                                  1, column_start + last_max_loc[0] +
                                  last_radius + 1)
                    cv2.circle(light_circles, (centers[i][1], centers[i][0]),
                               radius + 5, WHITE, 3)
                    break

            if radii[i] <= 33:
                raise NotImplementedError("hack")

            if debug:
                pylab.subplot(number_of_transmitters, 2, 2 * i + 2)
                pylab.plot(f, Y_plot)
                pylab.title(str(centers[i]), size='xx-small')
                #pylab.xlabel('Frequency (Hz)')
                pylab.xlim([0, 16000])
                pylab.tick_params(labelsize=4)

            peaks = scipy.signal.argrelmax(Y_plot)[0]
            logger.debug2('peaks =\n{}'.format(peaks))
            logger.debug2('f[peaks] =\n{}'.format(f[peaks]))
            logger.debug2('Y_plot[peaks] =\n{}'.format(Y_plot[peaks]))

            idx = numpy.argmax(Y_plot[peaks])
            peak_freq = f[peaks[idx]]

            logger.debug('center {}\tradius {}\tpeak_freq = {}'.format(
                centers[i], radii[i], peak_freq))
            if debug:
                cv2.circle(contours_kept_image, (centers[i][1], centers[i][0]),
                           5, GREEN, -1)
                cv2.circle(contours_kept_image, (centers[i][1], centers[i][0]),
                           radius + 5, GREEN, 2)
                cv2.putText(
                    contours_kept_image,
                    "({} {}) {} Hz".format(centers[i][1], centers[i][0],
                                           int(peak_freq)),
                    (centers[i][1] + 100, centers[i][0]),
                    cv2.FONT_HERSHEY_TRIPLEX, 2, YELLOW)

            estimated_frequencies.append(peak_freq)
        except:
            logger.debug("Dropped failed center at {}".format(centers[i]))
            estimated_frequencies.append(10)

    if debug:
        dbg_plot_subplots('freq_fft_transmitters')
        dbg_save('contours-kept-labeled', contours_kept_image)
        dbg_save('circles', light_circles)

    logger.end_op()

    centers = numpy.array(centers)
    radii = numpy.array(radii)
    estimated_frequencies = numpy.array(estimated_frequencies)

    return (centers, radii, estimated_frequencies, gray_image.shape)
Ejemplo n.º 47
0
    def plot(self, dir1, dir2):
        read = LIGGGHTSER.read.Read()
        top = read.read_ave(dir1)
        ke = read.read_ave(dir2)
        plt.figure(figsize=(20, 15))
        font1 = {
            'weight': 'normal',
            'size': 18,
        }
        fontlabel = {
            'weight': 'normal',
            'size': 18,
        }

        ax411 = plt.subplot(411)
        x = top['v_xForce']
        y = top['v_yForce']
        x = np.array(x)
        y = np.array(y)
        friction = x / y
        l11 = plt.plot(top['TimeStep'], friction, linewidth=5.0, linestyle='-')
        # plt.xlim((3e7,6e7))
        # plt.ylim((0.1,0.51))
        # plt.xticks(np.arange(3e7,6e7,0.5e7))
        # plt.yticks(np.arange(0.1,0.5,0.1))
        plt.tick_params(labelsize=18, direction='in', pad=15)
        ax411.spines['bottom'].set_linewidth(3)
        ax411.spines['top'].set_linewidth(3)
        ax411.spines['left'].set_linewidth(3)
        ax411.spines['right'].set_linewidth(3)
        plt.title('Friction', loc='right', fontsize=24, pad=10)
        # ax411.set_title('Friction',fontsize=18)
        # plt.xlabel('TimeStep')
        plt.ylabel('Friciton ratio', fontlabel)

        ax412 = plt.subplot(412)
        l21 = plt.plot(top['TimeStep'],
                       top['v_yPos'],
                       linewidth=5.0,
                       linestyle='-')
        # plt.xlim((3e7,6e7))
        # plt.ylim((0.148,0.150))
        # plt.xticks(np.arange(3e7,6e7,0.5e7))
        # plt.yticks(np.arange(1.48e-1,1.5e-1,5e-4))
        plt.tick_params(labelsize=18, direction='in', pad=15)
        ax412.spines['bottom'].set_linewidth(3)
        ax412.spines['top'].set_linewidth(3)
        ax412.spines['left'].set_linewidth(3)
        ax412.spines['right'].set_linewidth(3)
        plt.title('Mesh Position', loc='right', fontsize=24, pad=10)
        # plt.xlabel('TimeStep')
        plt.ylabel('Topmesh Position', fontlabel)

        ax413 = plt.subplot(413)
        l31 = plt.plot(ke['TimeStep'],
                       ke['c_2'],
                       linewidth=5.0,
                       linestyle='-',
                       zorder=30)
        # plt.xlim((3e7,6e7))
        # plt.ylim((0,10000))
        # plt.xticks(np.arange(3e7,6e7,0.5e7))
        # plt.yticks(np.arange(0,10000,1000))
        plt.tick_params(labelsize=18, direction='in', pad=15)
        ax413.spines['bottom'].set_linewidth(3)
        ax413.spines['top'].set_linewidth(3)
        ax413.spines['left'].set_linewidth(3)
        ax413.spines['right'].set_linewidth(3)
        # ax413.set_yscale("log")
        # plt.title('Energy',loc='right',fontsize=24,pad=10)
        # plt.xlabel('TimeStep')
        plt.ylabel('Kinetic Energy', fontlabel)
        plt.subplots_adjust(left=0.1,
                            right=0.97,
                            bottom=0.05,
                            top=0.95,
                            wspace=0.1,
                            hspace=0.4)
        plt.show()
            times = evoked.times * 1000
            sel = fiff.pick_types(evoked.info,
                                  meg=False,
                                  eeg=False,
                                  include=channelList)
            print sel
            data = evoked.data[sel] * 1e13
            square = np.power(data, 2)
            meanSquare = np.mean(square, 0)
            rms = np.power(meanSquare, .5)
            pl.plot(times, rms, color=colorList[c], linewidth=lWidth)
            pl.ylim([ymin, ymax])
            pl.xlim([xmin, xmax])
            pl.box('off')  # turn off the box frame
            pl.axhline(y=0, xmin=0, xmax=1, color='k',
                       linewidth=2)  #draw a thicker horizontal line at 0
            pl.axvline(
                x=0, ymin=0, ymax=1, color='k', linewidth=2
            )  #draw a vertical line at 0 that goes 1/8 of the range in each direction from the middle (e.g., if the range is -8:8, =16, 1/8 of 16=2, so -2:2).
            pl.tick_params(axis='both', right='off',
                           top='off')  #turn off all the tick marks
            pl.yticks(np.array([0., 4., 8., 12., 16.]))
            pl.xticks(np.array([0, 200, 400, 600]))

        #pl.title(hem + group)
        #pl.show()

    outFile = results_path + args.prefix + '-' + str(args.set1) + '-' + str(
        args.set2) + '-' + group + '.png'
    pl.savefig(outFile)
def PLOTdetrendORBITfluxFULL(time, flux, orbitalPHASE, TCK, **kwargs):
    """
    Routine going with detrendORBITflux to visualize the detrending of the photometry for the instrumental correction between the satellite's orbital phase and BRITE flux.
    
    Returns: Figure with -hopefully- enough diagnostics to determine the strength / weaknessess of the detrending
    
    @param flux: flux measurements [adu]
    @type flux: numpy array of length N
    @param orbitalPHASE: orbital phase measurements []; ranges from 0 to 1
    @type orbitalPHASE: numpy array of length N
    @param TCK: spline tck for the favored fit
    @type TCK: tuple
    """

    # Calculating the corrections
    # ---------------------------
    fluxCORRECTION = scInterp.splev(orbitalPHASE, TCK)

    # Setting up the figure window
    # ----------------------------
    figORBITcorr = pl.figure(figsize=(16, 16))
    gsORBITcorr = gridspec.GridSpec(2,
                                    2,
                                    height_ratios=[1, 1],
                                    width_ratios=[3, 2])
    axTIMEorig = figORBITcorr.add_subplot(
        gsORBITcorr[0, 0])  # Initial flux with time
    axTIMEcorr = figORBITcorr.add_subplot(
        gsORBITcorr[1, 0], sharex=axTIMEorig,
        sharey=axTIMEorig)  # Corrected flux with time
    axORBITorig = figORBITcorr.add_subplot(
        gsORBITcorr[0, 1], sharey=axTIMEorig)  # Initial flux with orbitalPHASE
    axORBITcorr = figORBITcorr.add_subplot(
        gsORBITcorr[1, 1], sharex=axORBITorig,
        sharey=axTIMEorig)  # Corrected flux with orbitalPHASE

    # Panels related to time
    # ----------------------
    axTIMEorig.plot(time, flux, 'k.', ms=6, alpha=.4)
    pl.tick_params('both', length=10, width=2, which='major')
    pl.tick_params('both', length=10, width=1, which='minor')
    pyplot.locator_params(axis='x', nbins=5)
    pyplot.locator_params(axis='y', nbins=5)
    axTIMEorig.set_title('Original')
    axTIMEorig.set_ylabel('Flux [adu]')

    axTIMEcorr.plot(time, flux - fluxCORRECTION, 'k.', ms=6, alpha=.4)
    pl.tick_params('both', length=10, width=2, which='major')
    pl.tick_params('both', length=10, width=1, which='minor')
    pyplot.locator_params(axis='x', nbins=5)
    pyplot.locator_params(axis='y', nbins=5)
    axTIMEcorr.set_title('After correction')
    axTIMEcorr.set_ylabel('Flux [adu]')
    axTIMEcorr.set_ylabel('Time [d]')
    # Panels related to orbitalPHASE
    # --------------------------------------
    axORBITorig.plot(orbitalPHASE, flux, 'k.', ms=6, alpha=.4)
    axORBITorig.plot(orbitalPHASE + 1., flux, 'k.', ms=6, alpha=.4)
    axORBITorig.plot(orbitalPHASE, fluxCORRECTION, 'r.', ms=6, alpha=.8)
    axORBITorig.plot(orbitalPHASE + 1., fluxCORRECTION, 'r.', ms=6, alpha=.8)
    pl.tick_params('both', length=10, width=2, which='major')
    pl.tick_params('both', length=10, width=1, which='minor')
    pyplot.locator_params(axis='x', nbins=5)
    pyplot.locator_params(axis='y', nbins=5)
    axORBITorig.set_title('Correction')

    axORBITcorr.plot(orbitalPHASE, flux - fluxCORRECTION, 'k.', ms=6, alpha=.4)
    axORBITcorr.plot(orbitalPHASE + 1.,
                     flux - fluxCORRECTION,
                     'k.',
                     ms=6,
                     alpha=.4)
    pl.tick_params('both', length=10, width=2, which='major')
    pl.tick_params('both', length=10, width=1, which='minor')
    pyplot.locator_params(axis='x', nbins=5)
    pyplot.locator_params(axis='y', nbins=5)
    axORBITcorr.set_title('Residuals correction')
    axORBITcorr.set_ylabel('Orbital phase')

    # Settings
    # --------
    axTIMEorig.set_xlim([np.min(time), np.max(time)])
    axTIMEorig.set_ylim([np.min(flux) * 1.2,
                         np.max(flux) * 1.2])
    axORBITorig.set_xlim(
        [np.min(orbitalPHASE) - 0.1,
         np.max(orbitalPHASE) + 1.1])
    axTIMEcorr.set_xlabel('Time [d]')
    axTIMEorig.set_ylabel('Flux [adu]')
    axTIMEcorr.set_ylabel('Flux [adu]')
    axORBITcorr.set_xlabel('Orbital phase')

    return
Ejemplo n.º 50
0
def plot_numpoints(targname, filt, exp_length, flashlvl, aperture,
                      outloc, ylims):
    """ Plots fraction of non-ctecorr to ctecorr sources recovered 
    vs fluxbin, for a subset of epochs.
    """

    proposid_ls = ['12379', '12692', '13083', '13566', '14012']
    color_ls = ['red', 'orange', 'lime', 'green', 'blue'] 
    marker_ls = ['o', 'd', 's', '*', '^']
    #color_ls = itertools.cycle(colors)

    epoch_ls = []
    #proposid_ls = []
    for proposid in proposid_ls:
        if exp_length == 'l':
            if '104' in targname:
                exptime = 348
            elif '6791' in targname:
                exptime = 420
        elif exp_length == 's':
            if '104' in targname:
                exptime = 30
            elif '6791' in targname:
                exptime = 60
        epochs = query_for_dateobss(targname, proposid, filt, exptime)
        epochs = list(set(epochs))    
        epoch_ls.append(epochs[-1])
        #for epoch in epochs:
        #    proposid_ls.append(proposid)
    print("epoch_ls: {}".format(epoch_ls))
    
    # Set the figure.
    pylab.figure(figsize=(12.5,8.5))

    for epoch, proposid, color, marker in zip(epoch_ls, proposid_ls, color_ls, marker_ls):
        # ctecorr True
        slopes_ctecorr, stderrs_ctecorr, mjds_ctecorr, fluxbins_ctecorr, numpoints_ctecorr = query_db_python(
            targname, filt, exp_length, flashlvl, ctecorr=True, aperture=aperture, 
            epoch=epoch, proposid=proposid)

        mjds_ctecorr_cut = np.array(mjds_ctecorr[np.where(mjds_ctecorr == epoch)])
        fluxbins_ctecorr_cut = np.array(fluxbins_ctecorr[np.where(mjds_ctecorr == epoch)])
        numpoints_ctecorr_cut = np.array(numpoints_ctecorr[np.where(mjds_ctecorr == epoch)])

        # ctecorr False
        slopes, stderrs, mjds, fluxbins, numpoints, = query_db_python(
            targname, filt, exp_length, flashlvl, ctecorr=False, aperture=aperture, 
            epoch=epoch, proposid=proposid)

        mjds_cut = np.array(mjds[np.where(mjds == epoch)])
        fluxbins_cut = np.array(fluxbins[np.where(mjds == epoch)])
        numpoints_cut = np.array(numpoints[np.where(mjds == epoch)])

        print("fluxbins_cut: {}".format(fluxbins_cut))   
        print("numpoints_cut: {}".format(numpoints_cut))    
        print("numpoints_ctecorr_cut: {}".format(numpoints_ctecorr_cut))   

        if len(numpoints_cut) == len(numpoints_ctecorr_cut) and len(numpoints_cut) != 0:

            fluxbins_log = []
            for fluxbin in fluxbins_cut:
                fluxlo = float(fluxbin.split('-')[0])
                fluxhi = float(fluxbin.split('-')[1])
                flux_av = (fluxlo + fluxhi)/2.0
                fluxbins_log.append(np.log10(flux_av))

            # Calculate fraction recovered

            frac_recovered =(1.0 - (numpoints_ctecorr_cut.astype(float) - numpoints_cut.astype(float))/ numpoints_ctecorr_cut.astype(float))*100.

            print("frac_recovered: {}".format(frac_recovered))     

            # Set the next color in sequence.
            #color = next(color_ls)
            pylab.scatter(fluxbins_log, frac_recovered, 
                    s=120, marker=marker, color='grey', alpha=0.6, label='MJD={}'.format(epoch))

    pylab.xlabel('LOG10 Flux [e-])', fontsize=22, weight='bold') 
    pylab.ylabel('% Sources Recovered w/ CTEcorr', fontsize=22, weight='bold')
    pylab.axhline(y=100.0, linewidth=2, linestyle='--', color='grey')
    pylab.tick_params(axis='both', which='major', labelsize=20)
    title = "{} {} explen'{}' pf{} ap{}".format(targname, filt, 
        exp_length, flashlvl, aperture)
    pylab.title(title, fontsize=16)
    pylab.xlim([2.5, 4.5])
    pylab.ylim([40.,120])
    pylab.legend(scatterpoints=1, loc='lower right')
    pylab.savefig(os.path.join(outloc, '{}_{}_{}_pf{}_r{}_fracrecoverd.png'.format(
        targname, filt, exp_length, flashlvl, aperture)), 
        bbox_inches='tight')
    value = 'Density'  # Choose quantity to plot: density, pressure, velocity
    colormap = cm.jet  # Choose colormap to use
    title = 'Colormap of ' + value + ' for Bessel Beam'
    tickSize = 14
    labelSize = 18
    titleSize = 24

    ## Plot colormap at some time
    fig = plt.figure()
    ax = fig.gca()

    if value == 'Density':
        data = rawData[:, :, 0, t]

    plt.imshow(data, origin='lower', cmap=colormap)
    plt.tick_params(labelsize=tickSize)
    plt.title(title, fontsize=titleSize)
    plt.xlabel('X Cell Number', fontsize=labelSize)
    plt.ylabel('Y Cell Number', fontsize=labelSize)
    plt.xlim([3, Nx - 2])
    plt.ylim([3, Ny - 2])

    m = cm.ScalarMappable(cmap=colormap)
    m.set_array(data)
    plt.colorbar(m)

    dataNameShort = dataName[0:-4]
    plt.savefig(dataNameShort + 't' + str(t) + value + '.png')

    #plt.show()
Ejemplo n.º 52
0
def labelPlot(xlab, ylab, title,textsize):
    plt.tick_params(labelsize=textsize)
    plt.xlabel(xlab,fontsize=textsize)
    plt.ylabel(ylab,fontsize=textsize)
    plt.title(title,fontsize=textsize)
Ejemplo n.º 53
0
def cnn_visualization(folder_name=None, h5name=None, num=None):
    """
    NAME: cnn_visualization
    PURPOSE: To visualize CNN model
    INPUT:
        folder_name = parent folder name
        data =
    OUTPUT: plots
    HISTORY:
        2017-Nov-02 Henry Leung
    """

    # Set number of spectra for CNN visualization
    if num is None:
        num = 20

    random.seed(3)

    data = h5name + '_train.h5'

    currentdir = os.getcwd()
    fullfolderpath = currentdir + '/' + folder_name
    vis_parent_path = os.path.join(fullfolderpath, 'cnn_visual')

    # load model
    modelname = '/model_{}.h5'.format(folder_name[-11:])
    model = load_model(os.path.normpath(fullfolderpath + modelname))

    layer_1 = K.function([model.layers[0].input, K.learning_phase()], [model.layers[1].output])

    layer_2 = K.function([model.layers[0].input, K.learning_phase()], [model.layers[2].output])

    target = np.load(fullfolderpath + '/targetname.npy')
    spec_meanstd = np.load(fullfolderpath + '/spectra_meanstd.npy')

    with h5py.File(data) as F:  # ensure the file will be cleaned up
        i = 0
        index_not9999 = []
        for tg in target:
            temp = np.array(F['{}'.format(tg)])
            temp_index = np.where(temp != -9999)
            if i == 0:
                index_not9999 = temp_index
                i += 1
            else:
                index_not9999 = reduce(np.intersect1d, (index_not9999, temp_index))

        spectra = np.array(F['spectra'])
        rel_index = np.array(F['index'])
        spectra = spectra[index_not9999]
        spectra -= spec_meanstd[0]
        spectra /= spec_meanstd[1]
        random_number = num
        ran = random.sample(range(0, spectra.shape[0], 1), random_number)
        spectra = spectra[ran]
        rel_index = rel_index[ran]
    num_label = spectra.shape[1]

    for i in range(random_number):
        temp_path = os.path.join(vis_parent_path, str(i))
        if not os.path.exists(temp_path):
            os.makedirs(temp_path)
        reshaped = spectra[i].reshape((1, num_label, 1))
        layer_1_output = layer_1([reshaped, 0])[0]
        layer_2_output = layer_2([reshaped, 0])[0]
        apogee_id = astroNN.NN.train_tools.apogee_id_fetch(relative_index=rel_index, dr=14)

        plt.figure(figsize=(30, 15), dpi=200)
        plt.rcParams['axes.grid'] = False
        plt.plot(spectra[i] * spec_meanstd[1] + spec_meanstd[0], alpha=0.8, linewidth=0.7, label='APOGEE Spectra')
        plt.xlabel('Pixel', fontsize=25)
        plt.ylabel('Flux ', fontsize=25)
        plt.title(apogee_id[i], fontsize=30)
        plt.xlim((0, num_label))
        plt.ylim((0.5, 1.5))
        plt.tick_params(labelsize=20, width=1, length=10)
        leg = plt.legend(loc='best', fontsize=20)
        for legobj in leg.legendHandles:
            legobj.set_linewidth(4.0)
        plt.tight_layout()
        plt.savefig(temp_path + '/spectra_{}.png'.format(apogee_id[i]))
        plt.close('all')
        plt.clf()

        plt.figure(figsize=(25, 20), dpi=200)
        plt.ylabel('Pixel', fontsize=35)
        plt.xlabel('CNN Filter number', fontsize=35)
        plt.title(apogee_id[i], fontsize=30)
        plt.imshow(layer_1_output[0, :, :], aspect='auto', norm=colors.PowerNorm(gamma=1. / 2.), cmap='gray')
        plt.tick_params(labelsize=25, width=1, length=10)
        cbar = plt.colorbar()
        cbar.ax.tick_params(labelsize=25, width=1, length=10)
        plt.tight_layout()
        plt.savefig(temp_path + '/cnn_layer1.png')
        plt.close('all')
        plt.clf()

        plt.figure(figsize=(25, 20), dpi=200)
        plt.ylabel('Pixel', fontsize=35)
        plt.xlabel('CNN Filter number', fontsize=35)
        plt.title(apogee_id[i], fontsize=30)
        plt.imshow(layer_2_output[0, :, :], aspect='auto', norm=colors.PowerNorm(gamma=1. / 2.), cmap='gray')
        plt.tick_params(labelsize=25, width=1, length=10)
        cbar = plt.colorbar()
        cbar.ax.tick_params(labelsize=25, width=1, length=10)
        plt.tight_layout()
        plt.savefig(temp_path + '/cnn_layer2.png')
        plt.close('all')
        plt.clf()
Ejemplo n.º 54
0

burn = 3500
print '# mean, st. dev., best $\chi^2$'
plottinghist('CC.chain', 'r', 900)
plottinghist('DC.chain', '--r', burn)
plottinghist('GC.chain', ':r', burn)
plottinghist('CD.chain', 'b', 700)
plottinghist('DD.chain', '--b', 700)
plottinghist('GD.chain', ':b', 900)
plottinghist('CG.chain', 'g', 8500)
plottinghist('DG.chain', '--g', burn)
plottinghist('GG.chain', ':g', 500)

#pylab.axvline(x=Rhalf(50.0,30.0,15.0,10.0),color='r',ls='-.',lw=2)
#pylab.axvline(x=50.0/2.0**0.5,color='b',ls='-.',lw=2)
#pylab.axvline(x=numpy.log(4.0)**0.5*50.0/3.0,color='g',ls='-.',lw=2)

pylab.legend(loc=9, fontsize=12)
pylab.xlim(25, 102)
#pylab.xlim(15,50)
pylab.xlabel('$\mathrm{R_{p}}$', fontsize=20)
pylab.ylabel('$\mathrm{Probability\ density\ function}$', fontsize=20)
pylab.ylim(ymax=1.0)
pylab.axvline(x=50, color='k', ls='-.', lw=2)
pylab.savefig('Rp4all.eps')

pylab.tick_params(axis='both', which='major', labelsize=20)
pylab.tick_params(axis='both', which='minor', labelsize=20)
pylab.show()
Ejemplo n.º 55
0
l11 = plt.plot(top1['TimeStep'],
               friction,
               linewidth=linewidth_set,
               linestyle='-',
               label='Unbreakable')
x = top2['v_xForce']
y = top2['v_yForce']
x = np.array(x)
y = np.array(y)
friction = x / y
l12 = plt.plot(top2['TimeStep'],
               friction,
               linewidth=linewidth_set,
               linestyle='-',
               label='breakable s=120MPa')
plt.tick_params(labelsize=18, direction='in', pad=15)
plt.xlim((xlow, xhigh))
plt.ylim((0.2, 0.51))
plt.yticks(np.arange(0.2, 0.51, 0.1))
ax411.spines['bottom'].set_linewidth(3)
ax411.spines['top'].set_linewidth(3)
ax411.spines['left'].set_linewidth(3)
ax411.spines['right'].set_linewidth(3)
plt.ylabel('Friction', fontlabel)
# plt.legend([l11,l12],labels=['Unbreakable','breakable s=120MPa'],loc='lower right',prop=font1)
ax411y2 = ax411.twinx()
l13 = ax411y2.plot(timestep2,
                   break_atom2,
                   linewidth=linewidth_set,
                   color='blue',
                   linestyle='-',
Ejemplo n.º 56
0
def embed(words, matrix, classes, usermodel, fname):
    perplexity = int(len(
        words)**0.5)  # We set perplexity to a square root of the words number
    embedding = TSNE(n_components=2,
                     perplexity=perplexity,
                     metric="cosine",
                     n_iter=500,
                     init="pca")
    y = embedding.fit_transform(matrix)

    print("2-d embedding finished", file=sys.stderr)

    class_set = [c for c in set(classes)]
    colors = plot.cm.rainbow(np.linspace(0, 1, len(class_set)))

    class2color = [colors[class_set.index(w)] for w in classes]

    xpositions = y[:, 0]
    ypositions = y[:, 1]
    seen = set()

    plot.clf()

    for color, word, class_label, x, y in zip(class2color, words, classes,
                                              xpositions, ypositions):
        plot.scatter(
            x,
            y,
            20,
            marker=".",
            color=color,
            label=class_label if class_label not in seen else "",
        )
        seen.add(class_label)

        lemma = word.split("_")[0].replace("::", " ")
        mid = len(lemma) / 2
        mid *= 4  # TODO Should really think about how to adapt this variable to the real plot size
        plot.annotate(
            lemma,
            xy=(x - mid, y),
            size="x-large",
            weight="bold",
            fontproperties=font,
            color=color,
        )

    plot.tick_params(axis="x",
                     which="both",
                     bottom=False,
                     top=False,
                     labelbottom=False)
    plot.tick_params(axis="y",
                     which="both",
                     left=False,
                     right=False,
                     labelleft=False)
    plot.legend(loc="best")

    plot.savefig(
        root + "data/images/tsneplots/" + usermodel + "_" + fname + ".png",
        dpi=150,
        bbox_inches="tight",
    )
    plot.close()
    plot.clf()
Ejemplo n.º 57
0
def BenchmarkSummaryFigure(models,
                           variables,
                           data,
                           figname,
                           vcolor=None,
                           rel_only=False):
    """Creates a summary figure for the benchmark results contained in the
    data array.

    Parameters
    ----------
    models : list
        a list of the model names 
    variables : list
        a list of the variable names
    data : numpy.ndarray or numpy.ma.ndarray
        data scores whose shape is ( len(variables), len(models) )
    figname : str
        the full path of the output file to write
    vcolor : list, optional
        an array parallel to the variables array containing background 
        colors for the labels to be displayed on the y-axis.
    """
    from mpl_toolkits.axes_grid1 import make_axes_locatable

    # data checks
    assert type(models) is type(list())
    assert type(variables) is type(list())
    assert (type(data) is type(np.empty(1))
            or type(data) is type(np.ma.empty(1)))
    assert data.shape[0] == len(variables)
    assert data.shape[1] == len(models)
    assert type(figname) is type("")
    if vcolor is not None:
        assert type(vcolor) is type(list())
        assert len(vcolor) == len(variables)

    # define some parameters
    nmodels = len(models)
    nvariables = len(variables)
    maxV = max([len(v) for v in variables])
    maxM = max([len(m) for m in models])
    wpchar = 0.1
    wpcell = 0.19
    hpcell = 0.25
    w = maxV * wpchar + max(4, nmodels) * wpcell
    if not rel_only: w += (max(4, nmodels) + 1) * wpcell
    h = maxM * wpchar + nvariables * hpcell + 1.0

    bad = 0.5
    if "stoplight" not in plt.colormaps(): RegisterCustomColormaps()

    # plot the variable scores
    if rel_only:
        fig, ax = plt.subplots(figsize=(w, h), ncols=1, tight_layout=True)
        ax = [ax]
    else:
        fig, ax = plt.subplots(figsize=(w, h), ncols=2, tight_layout=True)

    # absolute score
    if not rel_only:
        cmap = plt.get_cmap('stoplight')
        cmap.set_bad('k', bad)
        qc = ax[0].pcolormesh(np.ma.masked_invalid(data[::-1, :]),
                              cmap=cmap,
                              vmin=0,
                              vmax=1,
                              linewidth=0)
        div = make_axes_locatable(ax[0])
        fig.colorbar(qc,
                     ticks=(0, 0.25, 0.5, 0.75, 1.0),
                     format="%g",
                     cax=div.append_axes("bottom", size="5%", pad=0.05),
                     orientation="horizontal",
                     label="Absolute Score")
        plt.tick_params(which='both', length=0)
        ax[0].xaxis.tick_top()
        ax[0].set_xticks(np.arange(nmodels) + 0.5)
        ax[0].set_xticklabels(models, rotation=90)
        ax[0].set_yticks(np.arange(nvariables) + 0.5)
        ax[0].set_yticklabels(variables[::-1])
        ax[0].tick_params('both', length=0, width=0, which='major')
        ax[0].tick_params(axis='y', pad=10)
        if vcolor is not None:
            for i, t in enumerate(ax[0].yaxis.get_ticklabels()):
                t.set_backgroundcolor(vcolor[::-1][i])

    # relative score
    i = 0 if rel_only else 1
    np.seterr(invalid='ignore', under='ignore')
    data = np.ma.masked_invalid(data)
    data.data[data.mask] = 1.
    data = np.ma.masked_values(data, 1.)
    mean = data.mean(axis=1)
    std = data.std(axis=1).clip(0.02)
    np.seterr(invalid='ignore', under='ignore')
    Z = (data - mean[:, np.newaxis]) / std[:, np.newaxis]
    Z = np.ma.masked_invalid(Z)
    np.seterr(invalid='warn', under='raise')
    cmap = plt.get_cmap('RdGn')
    cmap.set_bad('k', bad)
    qc = ax[i].pcolormesh(Z[::-1], cmap=cmap, vmin=-2, vmax=2, linewidth=0)
    div = make_axes_locatable(ax[i])
    fig.colorbar(qc,
                 ticks=(-2, -1, 0, 1, 2),
                 format="%+d",
                 cax=div.append_axes("bottom", size="5%", pad=0.05),
                 orientation="horizontal",
                 label="Relative Score")
    plt.tick_params(which='both', length=0)
    ax[i].xaxis.tick_top()
    ax[i].set_xticks(np.arange(nmodels) + 0.5)
    ax[i].set_xticklabels(models, rotation=90)
    ax[i].tick_params('both', length=0, width=0, which='major')
    ax[i].set_yticks([])
    ax[i].set_ylim(0, nvariables)
    if rel_only:
        ax[i].set_yticks(np.arange(nvariables) + 0.5)
        ax[i].set_yticklabels(variables[::-1])
        if vcolor is not None:
            for i, t in enumerate(ax[i].yaxis.get_ticklabels()):
                t.set_backgroundcolor(vcolor[::-1][i])

    # save figure
    fig.savefig(figname)
Ejemplo n.º 58
0
#r'  $\epsilon$ = ' +str(params['eps']) ,
#fontsize=14, fontweight='bold')

## [GHO08a], [VUK13]
#fig.suptitle('FHN - Local Dynamics :  '+r'$\alpha$ = ' +str(params['alpha'])+
#r'  $  \gamma$ = '+str(params['gamma']) + ' $   b$ = '+
#str(params['b']) + r'  $\tau$ = '+str(params['TAU']) +
#'  D = ' + str(params['D']) ,
#fontsize=25)

pl.subplot(121)
pl.xlabel('t', fontsize=30)
pl.ylabel('x(t) , y(t)', fontsize=30)
pl.plot(t, x, 'r', label='$x(t)$')
pl.plot(t, y, 'b', label='$y(t)$')
pl.tick_params(labelsize=30)
#pl.plot(sol_adap['t'],sol_adap['x'],'.r',linewidth=0.2)
#pl.plot(sol_adap['t'],sol_adap['y'],'.b',linewidth=0.2)
pl.axis([0, tfinal, -3, 3])
lg = legend(prop={'size': 30})
lg.draw_frame(False)

pl.subplot(122)
pl.xlabel('x', fontsize=30)
pl.ylabel('y', fontsize=30)
pl.plot(x, y, 'k', label='$x(t),y(t)$')
pl.tick_params(labelsize=30)
pl.plot(x[0], y[0], '.r', markersize=25)
#pl.plot(x_, y_ , 'b',label='$x_{nullcline}$')
#pl.plot(xx,yy,'k',label='$y_{nullcline}$')
#pl.plot(-params['a'],(-params['a']+pow(params['a'],3)/3),'ok')
Ejemplo n.º 59
0
    #pl.xlim(xmin=1)
    pl.ylim(ymin=0)

    if int(args.matrixsize) != 1:
        ax.legend((methodsReal), 'lower left', shadow=True, fancybox=True)
    else:
        ax.legend((methodsReal), 'upper left', shadow=True, fancybox=True)

    # take real time of sequential computation to figure out the
    # granularity of the yaxis
    tmp_ticks = ax.yaxis.get_majorticklocs()
    granu = tmp_ticks[len(tmp_ticks) - 1] // (len(tmp_ticks) - 1) // 5
    if granu == 0.0:
        granu = 1.0
    ax.yaxis.set_minor_locator(MultipleLocator(granu))
    pl.tick_params(axis='both', which='major', labelsize=6)
    pl.tick_params(axis='both', which='minor', labelsize=6)

    #pl.savefig('timings.pdf',format='pdf',papertype='a4',orientation='landscape')
    pl.savefig(pp, format='pdf', papertype='a4', orientation='landscape')

    fig = pl.figure()
    ax = fig.add_subplot(111)
    fig.suptitle('GFLOPS/sec: CALU fully-dynamic scheduling w/ MKL',
                 fontsize=10)
    if int(args.matrixsize) != 1:
        pl.title('Matrix dimensions: ' + dimensions[0] + ' x ' + dimensions[1],
                 fontsize=8)
    else:
        pl.title('Number of threads: ' + str(args.threads), fontsize=8)
    if int(args.matrixsize) != 1:
Ejemplo n.º 60
0
       marker='D',
       label=r"WFIRST")

# Plot n(z) for Euclid for comparison
zmin, zmax, _a, nz_euclid, _b = np.genfromtxt("nz_euclid.dat").T
P.plot(0.5 * (zmin + zmax),
       nz_euclid * 0.67**3.,
       'm-',
       lw=1.5,
       marker='D',
       label=r"Euclid")

P.legend(loc='upper right', ncol=1, frameon=False, prop={'size': 'medium'})

P.xlim((0., 5.5))
P.ylim((1e-7, 1e-3))

P.tick_params(axis='both',
              which='major',
              labelsize=18,
              width=1.5,
              size=8.,
              pad=10)
P.tick_params(axis='both', which='minor', labelsize=18, width=1.5, size=8.)

P.xlabel("z", fontsize='x-large')
P.ylabel("n(z) [Mpc$^{-3}$]", fontsize='x-large')
P.yscale('log')
P.tight_layout()
P.show()