Ejemplo n.º 1
0
def test_input(generate_wrong_data_one):

    """
    The function tess if the input data type is correct or not.
    Examples
    --------
    >>> test_input(generate_wrong_data_one)
    """

    df, y = generate_wrong_data_one
    try:
        select_features.select_features(df, y, n_features=1)

    except AssertionError:
        pass
Ejemplo n.º 2
0
def test_columns():

    """
    The function tess if the input data has columns or not.
    Examples
    --------
    >>> test_input(generate_wrong_data_one)
    """

    df = pd.DataFrame(([1, 'x']))
    y = np.array([1, 2, 3])
    try:
        select_features.select_features(df, y, n_features=1)

    except AssertionError:
        pass
Ejemplo n.º 3
0
def run_pylaundry():
    """
    Runs all modules of pylaundry
    Arguments
    --------
    NA
    Returns
    ------
    features_selected = list of final features selected
    """
    col_dict = categorize(df=X_train)
    # second function - fill_missing
    clean_data = fill_missing(X_train,
                              X_test,
                              col_dict,
                              num_imp="mean",
                              cat_imp="mode")
    # third function - transform_columns
    transformed_data = transform_columns(clean_data['X_train'],
                                         clean_data['X_test'], col_dict)
    # fourth function - feature selection
    features_selected = select_features(transformed_data['X_train'],
                                        y_train,
                                        n_features=2)
    return features_selected
Ejemplo n.º 4
0
def test_dataframe(generate_wrong_data):

    """
    The function tests if the column type is correct in the input data.
    Examples
    --------
    >>> test_dataframe(generate_wrong_data)
    """

    df = generate_wrong_data
    y = df['y'].values
    df = df[['x1', 'x2', 'x3']]
    try:
        select_features.select_features(df, y, n_features=1)

    except AssertionError:
        pass
Ejemplo n.º 5
0
def test_regression_one(generate_data_regression_one):

    """
    The function does regression test for multi feature
    Examples
    --------
    >>> test_regression_one(generate_data_regression_one)
    """

    df = generate_data_regression_one
    y = df['y'].values
    df = df[['x1', 'x2', 'x3']]
    assert select_features.select_features(df, y, n_features=2) == ["x1", "x2"]
Ejemplo n.º 6
0
def test_regression(generate_data_regression):

    """
    The function does regression test for single feature
    Examples
    --------
    >>> test_regression(generate_data_regression)
    """

    df = generate_data_regression
    y = df['y'].values
    df = df[['x1', 'x2', 'x3']]
    assert select_features.select_features(df, y, n_features=1) == ["x1"]
Ejemplo n.º 7
0
def test_classification_multi(generate_data_classification_multi):

    """
    The function does classification test for multiple feature
    Examples
    --------
    >>> test_classification_multi(generate_data_classification_multi)
    """

    df = generate_data_classification_multi
    y = df['y'].values
    df = df[['x1', 'x2', 'x3']]
    t = select_features.select_features(df,
                                        y, mode="classification", n_features=2)
    assert t == ["x1", "x2"]
Ejemplo n.º 8
0
def test_classification(generate_data_classification):

    """
    The function does classification test for single feature
    Examples
    --------
    >>> test_classification(generate_data_classification)
    """

    df = generate_data_classification
    y = df['y'].values
    df = df[['x1', 'x2', 'x3']]
    t = select_features.select_features(df,
                                        y, mode="classification", n_features=1)
    assert t == ["x1"]