Ejemplo n.º 1
0
def test_seed_same():
    """Verifies that two MNDs initialized with the same
    seed produce the same samples """

    rng = np.random.RandomState([1,2,3])

    #the number in the argument here is the limit on
    #seed value
    seed = rng.randint(2147462579)

    dim = 3

    mu = rng.randn(dim)

    rank = dim

    X = rng.randn(rank,dim)

    cov = np.dot(X.T,X)

    mnd1 = MND( sigma = cov, mu = mu, seed = seed)

    num_samples = 5

    rd1 = mnd1.random_design_matrix(num_samples)
    rd1 = function([],rd1)()

    mnd2 = MND( sigma = cov, mu = mu, seed = seed)

    rd2 = mnd2.random_design_matrix(num_samples)
    rd2 = function([],rd2)()

    assert np.all(rd1 == rd2)
Ejemplo n.º 2
0
def test_seed_same():
    """Verifies that two MNDs initialized with the same
    seed produce the same samples """

    rng = np.random.RandomState([1, 2, 3])

    #the number in the argument here is the limit on
    #seed value
    seed = rng.randint(2147462579)

    dim = 3

    mu = rng.randn(dim)

    rank = dim

    X = rng.randn(rank, dim)

    cov = np.dot(X.T, X)

    mnd1 = MND(sigma=cov, mu=mu, seed=seed)

    num_samples = 5

    rd1 = mnd1.random_design_matrix(num_samples)
    rd1 = function([], rd1)()

    mnd2 = MND(sigma=cov, mu=mu, seed=seed)

    rd2 = mnd2.random_design_matrix(num_samples)
    rd2 = function([], rd2)()

    assert np.all(rd1 == rd2)
Ejemplo n.º 3
0
def test_seed_diff():
    """Verifies that two MNDs initialized with different
    seeds produce samples that differ at least somewhat
    (theoretically the samples could match even under
    valid behavior but this is extremely unlikely)"""

    skip_if_no_scipy()

    rng = np.random.RandomState([1,2,3])

    #the number in the argument here is the limit on
    #seed value, and we subtract 1 so it will be
    #possible to add 1 to it for the second MND
    seed = rng.randint(2147462579) -1

    dim = 3

    mu = rng.randn(dim)

    rank = dim

    X = rng.randn(rank,dim)

    cov = np.dot(X.T,X)

    mnd1 = MND( sigma = cov, mu = mu, seed = seed)

    num_samples = 5

    rd1 = mnd1.random_design_matrix(num_samples)
    rd1 = function([],rd1)()

    mnd2 = MND( sigma = cov, mu = mu, seed = seed + 1)

    rd2 = mnd2.random_design_matrix(num_samples)
    rd2 = function([],rd2)()

    assert np.any(rd1 != rd2)
Ejemplo n.º 4
0
def test_seed_diff():
    """Verifies that two MNDs initialized with different
    seeds produce samples that differ at least somewhat
    (theoretically the samples could match even under
    valid behavior but this is extremely unlikely)"""

    skip_if_no_scipy()

    rng = np.random.RandomState([1, 2, 3])

    #the number in the argument here is the limit on
    #seed value, and we subtract 1 so it will be
    #possible to add 1 to it for the second MND
    seed = rng.randint(2147462579) - 1

    dim = 3

    mu = rng.randn(dim)

    rank = dim

    X = rng.randn(rank, dim)

    cov = np.dot(X.T, X)

    mnd1 = MND(sigma=cov, mu=mu, seed=seed)

    num_samples = 5

    rd1 = mnd1.random_design_matrix(num_samples)
    rd1 = function([], rd1)()

    mnd2 = MND(sigma=cov, mu=mu, seed=seed + 1)

    rd2 = mnd2.random_design_matrix(num_samples)
    rd2 = function([], rd2)()

    assert np.any(rd1 != rd2)
Ejemplo n.º 5
0
betas = 10**scaled_shifted

kls = np.zeros((trials, num_beta))
ml_kls = np.zeros((trials, ))

for trial in xrange(trials):
    #generate the data
    data_distribution = MND(sigma=np.identity(dim) / true_beta,
                            mu=np.zeros((dim, )),
                            seed=17 * (trial + 1))
    true = DiagonalMND(nvis=dim,
                       init_beta=true_beta,
                       init_mu=0.,
                       min_beta=.1,
                       max_beta=10.)
    X = sharedX(function([], data_distribution.random_design_matrix(m))())

    Xv = X.get_value()
    mu = Xv.mean(axis=0)
    print 'maximum likelihood mu: ', mu
    diff = Xv - mu
    var = np.square(diff).mean(axis=0)
    mlbeta = 1. / var
    print 'maximum likelihood beta: ', mlbeta
    ml_model = DiagonalMND(nvis=dim,
                           init_mu=mu,
                           init_beta=mlbeta,
                           min_beta=0.0,
                           max_beta=1e6)
    ml_kl = kl_divergence(true, ml_model)
    ml_kl = function([], ml_kl)()
Ejemplo n.º 6
0
idxs = np.arange(num_beta)
pos = idxs / float(num_beta-1)
scaled_shifted = pos * (max_exp-min_exp) + min_exp
betas = 10 ** scaled_shifted


kls = np.zeros((trials,num_beta))
ml_kls = np.zeros((trials,))

for trial in xrange(trials):
#generate the data
    data_distribution = MND( sigma = np.identity(dim) / true_beta,
                            mu = np.zeros((dim,)), seed = 17 * (trial+1) )
    true = DiagonalMND( nvis = dim, init_beta = true_beta, init_mu = 0.,
            min_beta = .1, max_beta = 10.)
    X = sharedX(function([],data_distribution.random_design_matrix(m))())

    Xv = X.get_value()
    mu = Xv.mean(axis=0)
    print 'maximum likelihood mu: ',mu
    diff = Xv - mu
    var = np.square(diff).mean(axis=0)
    mlbeta = 1./var
    print 'maximum likelihood beta: ',mlbeta
    ml_model = DiagonalMND( nvis = dim, init_mu = mu, init_beta = mlbeta,
            min_beta = 0.0,
            max_beta = 1e6)
    ml_kl = kl_divergence( true, ml_model)
    ml_kl = function([],ml_kl)()
    assert ml_kl >= 0.0
    ml_kls[trial] = ml_kl