Ejemplo n.º 1
0
def mnist_build(b:Build)->None:
  o = build_outpath(b)
  c = build_cattrs(b)

  with load(build_path(b, c.dataset), allow_pickle=True) as f:
    x_train, y_train = f['x_train'], f['y_train']
    x_test, y_test = f['x_test'], f['y_test']

  x_train = x_train.reshape(x_train.shape[0], 28, 28, 1).astype('float32') / 255
  y_train = to_categorical(y_train, 10)

  x_test = x_test.reshape(x_test.shape[0], 28, 28, 1).astype('float32') / 255
  y_test = to_categorical(y_test, 10)


  print('x_train shape:', x_train.shape)
  print(x_train.shape[0], 'train samples')
  print(x_test.shape[0], 'test samples')

  model = Sequential()
  model.add(Conv2D(32, kernel_size=(3, 3), activation = 'relu', input_shape = (28,28,1)))
  model.add(Conv2D(64, (3, 3), activation = 'relu'))
  model.add(MaxPool2D(pool_size = (2,2)))
  model.add(Dropout(0.25))
  model.add(Flatten())
  model.add(Dense(128, activation = 'relu'))
  model.add(Dropout(0.5))
  model.add(Dense(10, activation = 'softmax'))

  model.compile(loss='categorical_crossentropy', optimizer='adam', metrics = ['accuracy'])
  model.fit(x_train, y_train, batch_size = 32, epochs = c.num_epoches, verbose = 0)
  accuracy = model.evaluate(x_test, y_test, verbose = 0)[-1]
  model.save_weights(join(o, 'weights.h5'), save_format='h5')
  with open(build_path(b,c.accuracy),'w') as f:
    f.write(str(accuracy))
Ejemplo n.º 2
0
def summary_realize(b:Build)->None:
  cwd = getcwd()
  try:
    chdir(build_outpath(b))
    c = build_cattrs(b)

    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    ax.set_ylabel('mean strategies')
    ax.grid()

    for nhist,histpath in enumerate(build_paths(b, c.history_refpath)):
      epoches:List[float]=[]; pmeans:List[float]=[]; rmeans:List[float]=[]
      with open(histpath,'r') as f:
        epoches,pmeans,rmeans=json_loads(f.read())
      if nhist==0:
        pargs = {'label':'Proposer mean'}
        rargs = {'label':'Responder mean'}
      else:
        pargs = {}; rargs = {}
      ax.plot(epoches,pmeans,color='blue',**pargs)
      ax.plot(epoches,rmeans,color='orange',**rargs)
    plt.savefig('figure.png')

    ax.legend(loc='upper right')
  finally:
    chdir(cwd)
Ejemplo n.º 3
0
      def _realize(b:Build):
        o=build_outpath(b)
        c=build_cattrs(b)
        assert isrefpath(mklens(b).maman.promise.refpath)
        assert isfile(mklens(b).papa.promise.syspath)
        assert o in mklens(b).promise.syspath
        assert o == mklens(b).syspath
        assert mklens(b).papa.name.val == '2'
        assert mklens(b).papa.dref == c.papa

        with open(mklens(b).promise.syspath,'w') as f:
          f.write('chickenpoop')
Ejemplo n.º 4
0
 def _realize(b: Build):
     o = build_outpath(b)
     c = build_cattrs(b)
     assert b.dref in c.promise
     assert n1 in store_cattrs(c.maman, S).promise
     assert build_path(b, c.promise) == join(o, 'uber-artifact')
     assert build_path(b,
                       store_cattrs(c.maman,
                                    S).promise) == build_path(
                                        b, c.maman_promise)
     if fullfill:
         with open(build_path(b, c.promise), 'w') as f:
             f.write('chickenpoop')
Ejemplo n.º 5
0
def hello_realize(b: Build) -> None:
    c: Any = build_cattrs(b)
    o: Path = build_outpath(b)
    with TemporaryDirectory() as tmp:
        copytree(mklens(b).src.syspath, join(tmp, 'src'))
        dirrw(Path(join(tmp, 'src')))
        cwd = getcwd()
        try:
            chdir(join(tmp, 'src'))
            system(f'./configure --prefix=/usr')
            system(f'make')
            system(f'make install DESTDIR={o}')
        finally:
            chdir(cwd)
Ejemplo n.º 6
0
  def _build(b:Build)->None:
    chdir(build_outpath(b))
    c=build_cattrs(b)

    fig=plt.figure()
    ax=fig.add_subplot(1, 1, 1)
    ax.set_ylabel('mean strategies')
    ax.grid()

    for nhist,histpath in enumerate(build_paths(b, c.history)):
      epoches:List[float]=[]; pmeans:List[float]=[]; rmeans:List[float]=[]
      with open(histpath,'r') as f:
        epoches,pmeans,rmeans=json_loads(f.read())
      ax.plot(epoches,pmeans,label=f'pmeans{nhist}',color='blue')
      ax.plot(epoches,rmeans,label=f'rmeans{nhist}',color='orange')
    plt.savefig('figure.png')
Ejemplo n.º 7
0
def mnist_train(b:Model)->None:
  o = build_outpath(b)
  c = build_cattrs(b)

  with np_load(build_path(b, c.dataset), allow_pickle=True) as f:
    b.x_train, b.y_train = f['x_train'], f['y_train']
    b.x_test, b.y_test = f['x_test'], f['y_test']

  b.x_train = b.x_train.reshape(b.x_train.shape[0], 28, 28, 1).astype('float32') / 255
  b.y_train = to_categorical(b.y_train, 10)

  b.x_test = b.x_test.reshape(b.x_test.shape[0], 28, 28, 1).astype('float32') / 255
  b.y_test = to_categorical(b.y_test, 10)


  print('x_train shape:', b.x_train.shape)
  print(b.x_train.shape[0], 'train samples')
  print(b.x_test.shape[0], 'test samples')

  model = Sequential()
  b.model = model
  model.add(Conv2D(32, kernel_size=(3, 3), activation = 'relu', input_shape = (28,28,1)))
  model.add(Conv2D(64, (3, 3), activation = 'relu'))
  model.add(MaxPool2D(pool_size = (2,2)))
  model.add(Dropout(0.25))
  model.add(Flatten())
  model.add(Dense(128, activation = 'relu'))
  model.add(Dropout(0.5))
  model.add(Dense(10, activation = 'softmax'))

  model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

  callbacks = [
    ModelCheckpoint(
      monitor='val_accuracy',
      filepath=join(o, "checkpoint.ckpt"),
      save_weights_only=True,
      save_best_only=True,
      verbose=True)]
  model.fit(b.x_train, b.y_train,
      batch_size=32,
      epochs=c.num_epoches,
      verbose=0,
      callbacks=callbacks,
      validation_split=0.2)
Ejemplo n.º 8
0
 def _build(b:Build)->None:
   c=build_cattrs(b)
   p=Pool()
   p.starmap(_build_process,[(c,o) for o in build_outpaths(b,nouts=c.nrunners)],1)
Ejemplo n.º 9
0
def evolution_realize(b:Build)->None:
  c = build_cattrs(b)
  p = Pool()
  p.starmap(_run_process,[(c,o) for o in build_outpaths(b,nouts=c.nrunners)],1)