Ejemplo n.º 1
0
def _linearinterp(M, iava, dims=None, dir=0, dtype='float64'):
    """Linear interpolation.
    """
    # ensure that samples are not beyond the last sample, in that case set to
    # penultimate sample and raise a warning
    if np.issubdtype(iava.dtype, np.integer):
        iava = iava.astype(np.float)
    if dims is None:
        lastsample = M
        dimsd = None
    else:
        lastsample = dims[dir]
        dimsd = list(dims)
        dimsd[dir] = len(iava)
        dimsd = tuple(dimsd)

    outside = (iava >= lastsample - 1)
    if sum(outside) > 0:
        logging.warning('at least one value is beyond penultimate sample, '
                        'forced to be at penultimate sample')
    iava[outside] = lastsample - 1 - 1e-10
    _checkunique(iava)

    # find indices and weights
    iva_l = np.floor(iava).astype(np.int)
    iva_r = iva_l + 1
    weights = iava - iva_l

    # create operators
    op = Diagonal(1 - weights, dims=dimsd, dir=dir, dtype=dtype) * \
         Restriction(M, iva_l, dims=dims, dir=dir, dtype=dtype) + \
         Diagonal(weights, dims=dimsd, dir=dir, dtype=dtype) * \
         Restriction(M, iva_r, dims=dims, dir=dir, dtype=dtype)
    return op, iava
Ejemplo n.º 2
0
def test_Restriction_1dsignal(par):
    """Dot-test, forward and adjoint for Restriction operator for 1d signal"""
    np.random.seed(10)

    Nsub = int(np.round(par["nx"] * perc_subsampling))
    iava = np.sort(np.random.permutation(np.arange(par["nx"]))[:Nsub])

    Rop = Restriction(par["nx"], iava, inplace=par["dtype"], dtype=par["dtype"])
    assert dottest(Rop, Nsub, par["nx"], complexflag=0 if par["imag"] == 0 else 3)

    x = np.ones(par["nx"]) + par["imag"] * np.ones(par["nx"])
    y = Rop * x
    x1 = Rop.H * y
    y1 = Rop.mask(x)

    assert_array_almost_equal(y, y1[iava])
    assert_array_almost_equal(x[iava], x1[iava])
Ejemplo n.º 3
0
def test_Restriction_2dsignal(par):
    """Dot-test, forward and adjoint for Restriction operator for 2d signal
    """
    np.random.seed(10)

    x = np.ones((par['nx'], par['nt'])) + \
        par['imag'] * np.ones((par['nx'], par['nt']))

    # 1st direction
    Nsub = int(np.round(par['nx'] * perc_subsampling))
    iava = np.sort(np.random.permutation(np.arange(par['nx']))[:Nsub])

    Rop = Restriction(par['nx'] * par['nt'],
                      iava,
                      dims=(par['nx'], par['nt']),
                      dir=0,
                      inplace=par['dtype'],
                      dtype=par['dtype'])
    assert dottest(Rop,
                   Nsub * par['nt'],
                   par['nx'] * par['nt'],
                   complexflag=0 if par['imag'] == 0 else 3)

    y = (Rop * x.ravel()).reshape(Nsub, par['nt'])
    x1 = (Rop.H * y.ravel()).reshape(par['nx'], par['nt'])
    y1_fromflat = Rop.mask(x.ravel())
    y1 = Rop.mask(x)

    assert_array_almost_equal(y,
                              y1_fromflat.reshape(par['nx'], par['nt'])[iava])
    assert_array_almost_equal(y, y1[iava])
    assert_array_almost_equal(x[iava], x1[iava])

    # 2nd direction
    Nsub = int(np.round(par['nt'] * perc_subsampling))
    iava = np.sort(np.random.permutation(np.arange(par['nt']))[:Nsub])

    Rop = Restriction(par['nx'] * par['nt'],
                      iava,
                      dims=(par['nx'], par['nt']),
                      dir=1,
                      inplace=par['dtype'],
                      dtype=par['dtype'])
    assert dottest(Rop,
                   par['nx'] * Nsub,
                   par['nx'] * par['nt'],
                   complexflag=0 if par['imag'] == 0 else 3)

    y = (Rop * x.ravel()).reshape(par['nx'], Nsub)
    x1 = (Rop.H * y.ravel()).reshape(par['nx'], par['nt'])
    y1_fromflat = Rop.mask(x.ravel())
    y1 = Rop.mask(x)

    assert_array_almost_equal(y, y1_fromflat[:, iava])
    assert_array_almost_equal(y, y1[:, iava])
    assert_array_almost_equal(x[:, iava], x1[:, iava])
Ejemplo n.º 4
0
def test_Restriction(par):
    """Dot-test, forward and adjoint for Restriction operator
    """
    # subsampling locations
    np.random.seed(10)
    perc_subsampling = 0.4
    Nsub = int(np.round(par['nx'] * perc_subsampling))
    iava = np.sort(np.random.permutation(np.arange(par['nx']))[:Nsub])

    Rop = Restriction(par['nx'], iava, dtype=par['dtype'])
    assert dottest(Rop, Nsub, par['nx'], complexflag=0 if par['imag'] == 0 else 3)

    x = np.ones(par['nx']) + par['imag'] * np.ones(par['nx'])
    y = Rop * x
    x1 = Rop.H * y
    y1 = Rop.mask(x)

    assert_array_almost_equal(y, y1[iava])
    assert_array_almost_equal(x[iava], x1[iava])
Ejemplo n.º 5
0
def Sliding3D(Op, dims, dimsd, nwin, nover, nop,
              tapertype='hanning', design=False, nproc=1):
    """3D Sliding transform operator.

    Apply a transform operator ``Op`` repeatedly to patches of the model
    vector in forward mode and patches of the data vector in adjoint mode.
    More specifically, in forward mode the model vector is divided into patches
    each patch is transformed, and patches are then recombined in a sliding
    window fashion. Both model and data should be 3-dimensional
    arrays in nature as they are internally reshaped and interpreted as
    3-dimensional arrays. Each patch contains in fact a portion of the
    array in the first and second dimensions (and the entire third dimension).

    This operator can be used to perform local, overlapping transforms (e.g.,
    :obj:`pylops.signalprocessing.FFTND`
    or :obj:`pylops.signalprocessing.Radon3D`) of 3-dimensional arrays.

    .. note:: The shape of the model has to be consistent with
       the number of windows for this operator not to return an error. As the
       number of windows depends directly on the choice of ``nwin`` and
       ``nover``, it is recommended to use ``design=True`` if unsure about the
       choice ``dims`` and use the number of windows printed on screen to
       define such input parameter.

    .. warning:: Depending on the choice of `nwin` and `nover` as well as the
       size of the data, sliding windows may not cover the entire first and/or
       second dimensions. The start and end indeces of each window can be
       displayed using ``design=True`` while defining the best sliding window
       approach.

    Parameters
    ----------
    Op : :obj:`pylops.LinearOperator`
        Transform operator
    dims : :obj:`tuple`
        Shape of 3-dimensional model. Note that ``dims[0]`` and ``dims[1]``
        should be multiple of the model sizes of the transform in the
        first and second dimensions
    dimsd : :obj:`tuple`
        Shape of 3-dimensional data
    nwin : :obj:`tuple`
        Number of samples of window
    nover : :obj:`tuple`
        Number of samples of overlapping part of window
    nop : :obj:`tuple`
        Number of samples in axes of transformed domain associated
        to spatial axes in the data
    tapertype : :obj:`str`, optional
        Type of taper (``hanning``, ``cosine``, ``cosinesquare`` or ``None``)
    design : :obj:`bool`, optional
        Print number sliding window (``True``) or not (``False``)

    Returns
    -------
    Sop : :obj:`pylops.LinearOperator`
        Sliding operator

    Raises
    ------
    ValueError
        Identified number of windows is not consistent with provided model
        shape (``dims``).

    """
    # model windows
    mwin0_ins, mwin0_ends = _slidingsteps(dims[0],
                                          Op.shape[1]//(nop[1]*dims[2]), 0)
    mwin1_ins, mwin1_ends = _slidingsteps(dims[1],
                                          Op.shape[1]//(nop[0]*dims[2]), 0)

    # data windows
    dwin0_ins, dwin0_ends = _slidingsteps(dimsd[0], nwin[0], nover[0])
    dwin1_ins, dwin1_ends = _slidingsteps(dimsd[1], nwin[1], nover[1])
    nwins0 = len(dwin0_ins)
    nwins1 = len(dwin1_ins)
    nwins = nwins0*nwins1

    # create tapers
    if tapertype is not None:
        tap = taper3d(dimsd[2], nwin, nover, tapertype=tapertype)

    # check that identified number of windows agrees with mode size
    if design:
        logging.warning('(%d,%d) windows required...', nwins0, nwins1)
        logging.warning('model wins - start0:%s, end0:%s, start1:%s, end1:%s',
                        str(mwin0_ins), str(mwin0_ends),
                        str(mwin1_ins), str(mwin1_ends))
        logging.warning('data wins - start0:%s, end0:%s, start1:%s, end1:%s',
                        str(dwin0_ins), str(dwin0_ends),
                        str(dwin1_ins), str(dwin1_ends))

    if nwins*Op.shape[1]//dims[2] != dims[0]*dims[1]:
        raise ValueError('Model shape (dims=%s) is not consistent with chosen '
                         'number of windows. Choose dims[0]=%d and '
                         'dims[1]=%d for the operator to work with '
                         'estimated number of windows, or create '
                         'the operator with design=True to find out the'
                         'optimal number of windows for the current '
                         'model size...'
                         % (str(dims), nwins0*Op.shape[1]//(nop[1]*dims[2]),
                            nwins1 * Op.shape[1]//(nop[0]*dims[2])))
    # transform to apply
    if tapertype is None:
        OOp = BlockDiag([Op for _ in range(nwins)], nproc=nproc)
    else:
        OOp = BlockDiag([Diagonal(tap.flatten()) * Op
                         for _ in range(nwins)], nproc=nproc)

    hstack = HStack([Restriction(dimsd[1] * dimsd[2] * nwin[0],
                                 range(win_in, win_end),
                                 dims=(nwin[0], dimsd[1], dimsd[2]),
                                 dir=1).H
                     for win_in, win_end in zip(dwin1_ins,
                                                dwin1_ends)])

    combining1 = BlockDiag([hstack]*nwins0)
    combining0 = HStack([Restriction(np.prod(dimsd),
                                     range(win_in, win_end),
                                     dims=dimsd, dir=0).H
                         for win_in, win_end in zip(dwin0_ins, dwin0_ends)])
    Sop = combining0 * combining1 * OOp
    return Sop
Ejemplo n.º 6
0
def Sliding1D(Op, dim, dimd, nwin, nover, tapertype="hanning", design=False):
    r"""1D Sliding transform operator.

    Apply a transform operator ``Op`` repeatedly to slices of the model
    vector in forward mode and slices of the data vector in adjoint mode.
    More specifically, in forward mode the model vector is divided into
    slices, each slice is transformed, and slices are then recombined in a
    sliding window fashion.

    This operator can be used to perform local, overlapping transforms (e.g.,
    :obj:`pylops.signalprocessing.FFT`) on 1-dimensional arrays.

    .. note:: The shape of the model has to be consistent with
       the number of windows for this operator not to return an error. As the
       number of windows depends directly on the choice of ``nwin`` and
       ``nover``, it is recommended to use ``design=True`` if unsure about the
       choice ``dims`` and use the number of windows printed on screen to
       define such input parameter.

    .. warning:: Depending on the choice of `nwin` and `nover` as well as the
       size of the data, sliding windows may not cover the entire data.
       The start and end indices of each window can be displayed using
       ``design=True`` while defining the best sliding window approach.

    Parameters
    ----------
    Op : :obj:`pylops.LinearOperator`
        Transform operator
    dim : :obj:`tuple`
        Shape of 1-dimensional model.
    dimd : :obj:`tuple`
        Shape of 1-dimensional data
    nwin : :obj:`int`
        Number of samples of window
    nover : :obj:`int`
        Number of samples of overlapping part of window
    tapertype : :obj:`str`, optional
        Type of taper (``hanning``, ``cosine``, ``cosinesquare`` or ``None``)
    design : :obj:`bool`, optional
        Print number of sliding window (``True``) or not (``False``)

    Returns
    -------
    Sop : :obj:`pylops.LinearOperator`
        Sliding operator

    Raises
    ------
    ValueError
        Identified number of windows is not consistent with provided model
        shape (``dims``).

    """
    # model windows
    mwin_ins, mwin_ends = _slidingsteps(dim, Op.shape[1], 0)
    # data windows
    dwin_ins, dwin_ends = _slidingsteps(dimd, nwin, nover)
    nwins = len(dwin_ins)

    # create tapers
    if tapertype is not None:
        tap = taper(nwin, nover, tapertype=tapertype)
        tapin = tap.copy()
        tapin[:nover] = 1
        tapend = tap.copy()
        tapend[-nover:] = 1
        taps = {}
        taps[0] = tapin
        for i in range(1, nwins - 1):
            taps[i] = tap
        taps[nwins - 1] = tapend

    # check that identified number of windows agrees with mode size
    if design:
        logging.warning("%d windows required...", nwins)
        logging.warning("model wins - start:%s, end:%s", str(mwin_ins), str(mwin_ends))
        logging.warning("data wins - start:%s, end:%s", str(dwin_ins), str(dwin_ends))
    if nwins * Op.shape[1] != dim:
        raise ValueError(
            "Model shape (dim=%d) is not consistent with chosen "
            "number of windows. Choose dim=%d for the "
            "operator to work with estimated number of windows, "
            "or create the operator with design=True to find "
            "out the optimal number of windows for the current "
            "model size..." % (dim, nwins * Op.shape[1])
        )
    # transform to apply
    if tapertype is None:
        OOp = BlockDiag([Op for _ in range(nwins)])
    else:
        OOp = BlockDiag([Diagonal(taps[itap].ravel()) * Op for itap in range(nwins)])

    combining = HStack(
        [
            Restriction(dimd, np.arange(win_in, win_end), dtype=Op.dtype).H
            for win_in, win_end in zip(dwin_ins, dwin_ends)
        ]
    )
    Sop = combining * OOp
    return Sop
def Marchenko_depthloop_JointLsqr(zinvs, zendvs):
    toff = 0.045  # direct arrival time shift
    nfmax = 550  # max frequency for MDC (#samples)
    nfft = 2**11

    jr = 3  # subsampling in r

    # subsurface array
    xinvs = 600  # receiver array initial point in x
    xendvs = 2400  # receiver array last point in x

    dvsx = 20  # receiver array sampling in x
    dvsz = 5  # receiver array sampling in z

    # line of subsurface points for virtual sources
    vsx = np.arange(xinvs, xendvs + dvsx, dvsx)
    nvsx = vsx.shape[0]
    vsz = np.arange(zinvs, zendvs + dvsz, dvsz)
    nvsz = vsz.shape[0]

    # geometry
    nz = 401
    oz = 0
    dz = 4
    z = np.arange(oz, oz + nz * dz, dz)

    nx = 751
    ox = 0
    dx = 4
    x = np.arange(ox, ox + nx * dx, dx)

    # time axis
    ot = 0
    nt = 1081
    dt = 0.0025
    t = np.arange(ot, ot + nt * dt, dt)

    # Receivers
    r = np.loadtxt(path0 + 'r.dat', delimiter=',')
    nr = r.shape[1]

    # Sources
    s = np.loadtxt(path0 + 's.dat', delimiter=',')
    ns = s.shape[1]
    ds = s[0, 1] - s[0, 0]

    # restriction operators
    iava1 = np.loadtxt(path0 + 'select_rfrac70.dat', delimiter=',',
                       dtype=int) - 1
    iava2 = np.loadtxt(path0 + 'select_rfrac50.dat', delimiter=',',
                       dtype=int) - 1
    nava1 = iava1.shape[0]
    nava2 = iava2.shape[0]
    Restrop1 = Restriction(ns * (2 * nt - 1),
                           iava1,
                           dims=(ns, 2 * nt - 1),
                           dir=0,
                           dtype='float64')
    Restrop2 = Restriction(ns * (2 * nt - 1),
                           iava2,
                           dims=(ns, 2 * nt - 1),
                           dir=0,
                           dtype='float64')

    # data
    print('Loading reflection data...')
    R_1 = np.zeros((nt, ns, nr), 'f')
    R_2 = np.zeros((nt, ns, nr), 'f')
    for isrc in range(ns - 1):
        is_ = isrc * jr
        R_1[:, :, isrc] = np.loadtxt(path0 + 'R/dat1_' + str(is_) + '.dat',
                                     delimiter=',')
        R_2[:, :, isrc] = np.loadtxt(path0 + 'R/dat2_' + str(is_) + '.dat',
                                     delimiter=',')

    R_1 = 2 * np.swapaxes(R_1, 0, 2)
    R_2 = 2 * np.swapaxes(R_2, 0, 2)

    # Convolution operators
    print('Creating MDC operators...')
    Rtwosided_1 = np.concatenate((np.zeros((nr, ns, nt - 1)), R_1), axis=-1)
    R1twosided_1 = np.concatenate(
        (np.flip(R_1, axis=-1), np.zeros((nr, ns, nt - 1))), axis=-1)

    Rtwosided_fft_1 = np.fft.rfft(Rtwosided_1, 2 * nt - 1,
                                  axis=-1) / np.sqrt(2 * nt - 1)
    Rtwosided_fft_1 = Rtwosided_fft_1[..., :nfmax]
    R1twosided_fft_1 = np.fft.rfft(R1twosided_1, 2 * nt - 1,
                                   axis=-1) / np.sqrt(2 * nt - 1)
    R1twosided_fft_1 = R1twosided_fft_1[..., :nfmax]

    Rtwosided_2 = np.concatenate((np.zeros((nr, ns, nt - 1)), R_2), axis=-1)
    R1twosided_2 = np.concatenate(
        (np.flip(R_2, axis=-1), np.zeros((nr, ns, nt - 1))), axis=-1)

    Rtwosided_fft_2 = np.fft.rfft(Rtwosided_2, 2 * nt - 1,
                                  axis=-1) / np.sqrt(2 * nt - 1)
    Rtwosided_fft_2 = Rtwosided_fft_2[..., :nfmax]
    R1twosided_fft_2 = np.fft.rfft(R1twosided_2, 2 * nt - 1,
                                   axis=-1) / np.sqrt(2 * nt - 1)
    R1twosided_fft_2 = R1twosided_fft_2[..., :nfmax]

    Rop1 = MDC(Rtwosided_fft_1[iava1],
               nt=2 * nt - 1,
               nv=1,
               dt=dt,
               dr=ds,
               twosided=True,
               dtype='complex64')
    R1op1 = MDC(R1twosided_fft_1[iava1],
                nt=2 * nt - 1,
                nv=1,
                dt=dt,
                dr=ds,
                twosided=True,
                dtype='complex64')

    Rop2 = MDC(Rtwosided_fft_2[iava2],
               nt=2 * nt - 1,
               nv=1,
               dt=dt,
               dr=ds,
               twosided=True,
               dtype='complex64')
    R1op2 = MDC(R1twosided_fft_2[iava2],
                nt=2 * nt - 1,
                nv=1,
                dt=dt,
                dr=ds,
                twosided=True,
                dtype='complex64')

    # wavelet and traveltime
    print('Loading direct wave...')
    wav = np.loadtxt(path0 + 'wav.dat', delimiter=',')
    wav_c = wav[np.argmax(wav) - 60:np.argmax(wav) + 60]

    trav_eik = np.loadtxt(path0 + 'trav.dat', delimiter=',')
    trav_eik = np.reshape(trav_eik, (nz, ns, nx))

    # the loop
    print('Entering loop...')
    for iz in range(nvsz):
        z_current = vsz[iz]

        PUP1 = np.zeros(shape=(nava1, nvsx, nt))
        PDOWN1 = np.zeros(shape=(nava1, nvsx, nt))
        PUP2 = np.zeros(shape=(nava2, nvsx, nt))
        PDOWN2 = np.zeros(shape=(nava2, nvsx, nt))

        for ix in range(nvsx):
            s = '############ Point ' + str(ix + 1) + ' of ' + str(
                nvsx) + ', line ' + str(iz + 1) + ' of ' + str(
                    nvsz) + ' (z = ' + str(vsz[iz]) + ', x = ' + str(
                        vsx[ix]) + ') ... ' + str(100 * (iz * nvsx + ix + 1) /
                                                  (nvsx * nvsz)) + '%'
            print(s)

            # direct wave
            direct = trav_eik[find_closest(z_current, z), :,
                              find_closest(vsx[ix], x)]
            W = np.abs(np.fft.rfft(wav, nfft)) * dt
            f = 2 * np.pi * np.arange(nfft) / (dt * nfft)
            g0VS = np.zeros((nfft, nr), dtype=np.complex128)
            for it in range(len(W)):
                g0VS[it] = W[it] * f[it] * hankel2(0,
                                                   f[it] * direct + 1e-10) / 4
            g0VS = np.fft.irfft(g0VS, nfft, axis=0) / dt
            g0VS = np.real(g0VS[:nt])

            # Marchenko focusing
            f1_1_minus, f1_1_plus, f1_2_minus, f1_2_plus, g_1_minus, g_1_plus, g_2_minus, g_2_plus = focusing_wrapper(
                direct, toff, g0VS, iava1, Rop1, R1op1, Restrop1, iava2, Rop2,
                R1op2, Restrop2, t)

            # assemble wavefields
            PUP1[:, ix, :] = g_1_minus[:, nt - 1:]
            PDOWN1[:, ix, :] = g_1_plus[:, nt - 1:]
            PUP2[:, ix, :] = g_2_minus[:, nt - 1:]
            PDOWN2[:, ix, :] = g_2_plus[:, nt - 1:]

        # calculate and save redatumed wavefields (line-by-line)
        jt = 2
        redatumed1 = MDD(PDOWN1[:, :, ::jt],
                         PUP1[:, :, ::jt],
                         dt=jt * dt,
                         dr=dvsx,
                         wav=wav_c[::jt],
                         twosided=True,
                         adjoint=False,
                         psf=False,
                         dtype='complex64',
                         dottest=False,
                         **dict(iter_lim=20, show=0))
        redatumed2 = MDD(PDOWN2[:, :, ::jt],
                         PUP2[:, :, ::jt],
                         dt=jt * dt,
                         dr=dvsx,
                         wav=wav_c[::jt],
                         twosided=True,
                         adjoint=False,
                         psf=False,
                         dtype='complex64',
                         dottest=False,
                         **dict(iter_lim=20, show=0))

        np.savetxt(path_save + 'Line1_' + str(z_current) + '.dat',
                   np.diag(redatumed1[:, :, (nt + 1) // jt - 1]),
                   delimiter=',')
        np.savetxt(path_save + 'Line2_' + str(z_current) + '.dat',
                   np.diag(redatumed2[:, :, (nt + 1) // jt - 1]),
                   delimiter=',')

        vel_sm = np.loadtxt(path0 + 'vel_sm.dat', delimiter=',')
        cp = vel_sm[find_closest(z_current, z), 751 // 2]

        # calculate and save angle gathers (line-by-line)
        irA = np.asarray([7, 15, 24, 35])
        nalpha = 201
        A1 = np.zeros((nalpha, len(irA)))
        A2 = np.zeros((nalpha, len(irA)))

        for i in np.arange(0, len(irA)):
            ir = irA[i]
            anglegath, alpha = AngleGather(np.swapaxes(redatumed1, 0, 2), nvsx,
                                           nalpha, dt * jt, ds, ir, cp)
            A1[:, i] = anglegath
            anglegath, alpha = AngleGather(np.swapaxes(redatumed2, 0, 2), nvsx,
                                           nalpha, dt * jt, ds, ir, cp)
            A2[:, i] = anglegath

        np.savetxt(path_save + 'AngleGather1_' + str(z_current) + '.dat',
                   A1,
                   delimiter=',')
        np.savetxt(path_save + 'AngleGather2_' + str(z_current) + '.dat',
                   A2,
                   delimiter=',')
Ejemplo n.º 8
0
def _nearestinterp(M, iava, dims=None, dir=0, dtype='float64'):
    """Nearest neighbour interpolation.
    """
    iava = np.round(iava).astype(np.int)
    _checkunique(iava)
    return Restriction(M, iava, dims=dims, dir=dir, dtype=dtype), iava
Ejemplo n.º 9
0
def Sliding2D(Op, dims, dimsd, nwin, nover, tapertype='hanning', design=False):
    """2D Sliding transform operator.

    Apply a transform operator ``Op`` repeatedly to patches of the model
    vector in forward mode and patches of the data vector in adjoint mode.
    More specifically, in forward mode the model vector is divided into patches
    each patch is transformed, and patches are then recombined in a sliding
    window fashion. Both model and data should be 2-dimensional
    arrays in nature as they are internally reshaped and interpreted as
    2-dimensional arrays. Each patch contains in fact a portion of the
    array in the first dimension (and the entire second dimension).

    This operator can be used to perform local, overlapping transforms (e.g.,
    :obj:`pylops.signalprocessing.FFT2`
    or :obj:`pylops.signalprocessing.Radon2D`) of 2-dimensional arrays.

    .. note:: The shape of the model has to be consistent with
       the number of windows for this operator not to return an error. As the
       number of windows depends directly on the choice of ``nwin`` and
       ``nover``, it is recommended to use ``design=True`` if unsure about the
       choice ``dims`` and use the number of windows printed on screen to
       define such input parameter.

    .. warning:: Depending on the choice of `nwin` and `nover` as well as the
       size of the data, sliding windows may not cover the entire first dimension.
       The start and end indeces of each window can be displayed using
       ``design=True`` while defining the best sliding window approach.

    Parameters
    ----------
    Op : :obj:`pylops.LinearOperator`
        Transform operator
    dims : :obj:`tuple`
        Shape of 2-dimensional model. Note that ``dims[0]`` should be multiple
        of the model size of the transform in the first dimension
    dimsd : :obj:`tuple`
        Shape of 2-dimensional data
    nwin : :obj:`int`
        Number of samples of window
    nover : :obj:`int`
        Number of samples of overlapping part of window
    tapertype : :obj:`str`, optional
        Type of taper (``hanning``, ``cosine``, ``cosinesquare`` or ``None``)
    design : :obj:`bool`, optional
        Print number of sliding window (``True``) or not (``False``)

    Returns
    -------
    Sop : :obj:`pylops.LinearOperator`
        Sliding operator

    Raises
    ------
    ValueError
        Identified number of windows is not consistent with provided model
        shape (``dims``).

    """
    # model windows
    mwin_ins, mwin_ends = _slidingsteps(dims[0], Op.shape[1] // dims[1], 0)
    # data windows
    dwin_ins, dwin_ends = _slidingsteps(dimsd[0], nwin, nover)
    nwins = len(dwin_ins)

    # create tapers
    if tapertype is not None:
        tap = taper2d(dimsd[1], nwin, nover, tapertype=tapertype)
        tapin = tap.copy()
        tapin[:nover] = 1
        tapend = tap.copy()
        tapend[-nover:] = 1
        taps = {}
        taps[0] = tapin
        for i in range(1, nwins - 1):
            taps[i] = tap
        taps[nwins - 1] = tapend

    # check that identified number of windows agrees with mode size
    if design:
        logging.warning('%d windows required...', nwins)
        logging.warning('model wins - start:%s, end:%s', str(mwin_ins),
                        str(mwin_ends))
        logging.warning('data wins - start:%s, end:%s', str(dwin_ins),
                        str(dwin_ends))
    if nwins * Op.shape[1] // dims[1] != dims[0]:
        raise ValueError('Model shape (dims=%s) is not consistent with chosen '
                         'number of windows. Choose dims[0]=%d for the '
                         'operator to work with estimated number of windows, '
                         'or create the operator with design=True to find '
                         'out the optimal number of windows for the current '
                         'model size...' %
                         (str(dims), nwins * Op.shape[1] // dims[1]))
    # transform to apply
    if tapertype is None:
        OOp = BlockDiag([Op for _ in range(nwins)])
    else:
        OOp = BlockDiag(
            [Diagonal(taps[itap].flatten()) * Op for itap in range(nwins)])

    combining = HStack([
        Restriction(np.prod(dimsd), range(win_in, win_end), dims=dimsd).H
        for win_in, win_end in zip(dwin_ins, dwin_ends)
    ])
    Sop = combining * OOp
    return Sop
Ejemplo n.º 10
0
def Patch2D(Op,
            dims,
            dimsd,
            nwin,
            nover,
            nop,
            tapertype="hanning",
            design=False):
    """2D Patch transform operator.

    Apply a transform operator ``Op`` repeatedly to patches of the model
    vector in forward mode and patches of the data vector in adjoint mode.
    More specifically, in forward mode the model vector is divided into
    patches, each patch is transformed, and patches are then recombined
    together. Both model and data are internally reshaped and
    interpreted as 2-dimensional arrays: each patch contains a portion
    of the array in both the first and second dimension.

    This operator can be used to perform local, overlapping transforms (e.g.,
    :obj:`pylops.signalprocessing.FFT2D`
    or :obj:`pylops.signalprocessing.Radon2D`) on 2-dimensional arrays.

    .. note:: The shape of the model has to be consistent with
       the number of windows for this operator not to return an error. As the
       number of windows depends directly on the choice of ``nwin`` and
       ``nover``, it is recommended to use ``design=True`` if unsure about the
       choice ``dims`` and use the number of windows printed on screen to
       define such input parameter.

    .. warning:: Depending on the choice of `nwin` and `nover` as well as the
       size of the data, patches may not cover the entire size of the data.
       The start and end indices of each window can be displayed using
       ``design=True`` while defining the best patching approach.

    Parameters
    ----------
    Op : :obj:`pylops.LinearOperator`
        Transform operator
    dims : :obj:`tuple`
        Shape of 2-dimensional model. Note that ``dims[0]`` and ``dims[1]``
        should be multiple of the model size of the transform in their
        respective dimensions
    dimsd : :obj:`tuple`
        Shape of 2-dimensional data
    nwin : :obj:`tuple`
        Number of samples of window
    nover : :obj:`tuple`
        Number of samples of overlapping part of window
    nop : :obj:`tuple`
        Size of model in the transformed domain
    tapertype : :obj:`str`, optional
        Type of taper (``hanning``, ``cosine``, ``cosinesquare`` or ``None``)
    design : :obj:`bool`, optional
        Print number of sliding window (``True``) or not (``False``)

    Returns
    -------
    Sop : :obj:`pylops.LinearOperator`
        Sliding operator

    Raises
    ------
    ValueError
        Identified number of windows is not consistent with provided model
        shape (``dims``).

    See Also
    --------
    Sliding2d: 2D Sliding transform operator.

    """
    # model windows
    mwin0_ins, mwin0_ends = _slidingsteps(dims[0], nop[0], 0)
    mwin1_ins, mwin1_ends = _slidingsteps(dims[1], nop[1], 0)

    # data windows
    dwin0_ins, dwin0_ends = _slidingsteps(dimsd[0], nwin[0], nover[0])
    dwin1_ins, dwin1_ends = _slidingsteps(dimsd[1], nwin[1], nover[1])
    nwins0 = len(dwin0_ins)
    nwins1 = len(dwin1_ins)
    nwins = nwins0 * nwins1

    # create tapers
    if tapertype is not None:
        tap = taper2d(nwin[1], nwin[0], nover,
                      tapertype=tapertype).astype(Op.dtype)
        taps = {itap: tap for itap in range(nwins)}
        # topmost tapers
        taptop = tap.copy()
        taptop[:nover[0]] = tap[nwin[0] // 2]
        for itap in range(0, nwins1):
            taps[itap] = taptop
        # bottommost tapers
        tapbottom = tap.copy()
        tapbottom[-nover[0]:] = tap[nwin[0] // 2]
        for itap in range(nwins - nwins1, nwins):
            taps[itap] = tapbottom
        # leftmost tapers
        tapleft = tap.copy()
        tapleft[:, :nover[1]] = tap[:, nwin[1] // 2][:, np.newaxis]
        for itap in range(0, nwins, nwins1):
            taps[itap] = tapleft
        # rightmost tapers
        tapright = tap.copy()
        tapright[:, -nover[1]:] = tap[:, nwin[1] // 2][:, np.newaxis]
        for itap in range(nwins1 - 1, nwins, nwins1):
            taps[itap] = tapright
        # lefttopcorner taper
        taplefttop = tap.copy()
        taplefttop[:, :nover[1]] = tap[:, nwin[1] // 2][:, np.newaxis]
        taplefttop[:nover[0]] = taplefttop[nwin[0] // 2]
        taps[0] = taplefttop
        # righttopcorner taper
        taprighttop = tap.copy()
        taprighttop[:, -nover[1]:] = tap[:, nwin[1] // 2][:, np.newaxis]
        taprighttop[:nover[0]] = taprighttop[nwin[0] // 2]
        taps[nwins1 - 1] = taprighttop
        # leftbottomcorner taper
        tapleftbottom = tap.copy()
        tapleftbottom[:, :nover[1]] = tap[:, nwin[1] // 2][:, np.newaxis]
        tapleftbottom[-nover[0]:] = tapleftbottom[nwin[0] // 2]
        taps[nwins - nwins1] = tapleftbottom
        # rightbottomcorner taper
        taprightbottom = tap.copy()
        taprightbottom[:, -nover[1]:] = tap[:, nwin[1] // 2][:, np.newaxis]
        taprightbottom[-nover[0]:] = taprightbottom[nwin[0] // 2]
        taps[nwins - 1] = taprightbottom

    # check that identified number of windows agrees with mode size
    if design:
        logging.warning("%d-%d windows required...", nwins0, nwins1)
        logging.warning(
            "model wins - start:%s, end:%s / start:%s, end:%s",
            str(mwin0_ins),
            str(mwin0_ends),
            str(mwin1_ins),
            str(mwin1_ends),
        )
        logging.warning(
            "data wins - start:%s, end:%s / start:%s, end:%s",
            str(dwin0_ins),
            str(dwin0_ends),
            str(dwin1_ins),
            str(dwin1_ends),
        )
    if nwins0 * nop[0] != dims[0] or nwins1 * nop[1] != dims[1]:
        raise ValueError("Model shape (dims=%s) is not consistent with chosen "
                         "number of windows. Choose dims[0]=%d and "
                         "dims[1]=%d for the operator to work with "
                         "estimated number of windows, or create "
                         "the operator with design=True to find out the"
                         "optimal number of windows for the current "
                         "model size..." %
                         (str(dims), nwins0 * nop[0], nwins1 * nop[1]))
    # transform to apply
    if tapertype is None:
        OOp = BlockDiag([Op for _ in range(nwins)])
    else:
        OOp = BlockDiag([
            Diagonal(taps[itap].ravel(), dtype=Op.dtype) * Op
            for itap in range(nwins)
        ])

    hstack = HStack([
        Restriction(
            dimsd[1] * nwin[0],
            range(win_in, win_end),
            dims=(nwin[0], dimsd[1]),
            dir=1,
            dtype=Op.dtype,
        ).H for win_in, win_end in zip(dwin1_ins, dwin1_ends)
    ])

    combining1 = BlockDiag([hstack] * nwins0)
    combining0 = HStack([
        Restriction(
            np.prod(dimsd),
            range(win_in, win_end),
            dims=dimsd,
            dir=0,
            dtype=Op.dtype,
        ).H for win_in, win_end in zip(dwin0_ins, dwin0_ends)
    ])
    Pop = combining0 * combining1 * OOp
    return Pop
def Marchenko_depthloop_IndepRadon(zinvs, zendvs):

    toff = 0.045  # direct arrival time shift
    nfmax = 550  # max frequency for MDC (#samples)
    nfft = 2**11

    jr = 3  # subsampling in r

    # subsurface array
    xinvs = 600  # receiver array initial point in x
    xendvs = 2400  # receiver array last point in x

    dvsx = 20  # receiver array sampling in x
    dvsz = 5  # receiver array sampling in z

    # line of subsurface points for virtual sources
    vsx = np.arange(xinvs, xendvs + dvsx, dvsx)
    vsz = np.arange(zinvs, zendvs + dvsz, dvsz)

    # geometry
    nz = 401
    oz = 0
    dz = 4
    z = np.arange(oz, oz + nz * dz, dz)

    nx = 751
    ox = 0
    dx = 4
    x = np.arange(ox, ox + nx * dx, dx)

    # time axis
    ot = 0
    nt = 1081
    dt = 0.0025
    t = np.arange(ot, ot + nt * dt, dt)

    # Receivers
    r = np.loadtxt(path0 + 'r.dat', delimiter=',')
    nr = r.shape[1]

    # Sources
    s = np.loadtxt(path0 + 's.dat', delimiter=',')
    ns = s.shape[1]
    ds = s[0, 1] - s[0, 0]

    # restriction operators
    iava = np.loadtxt(path0 + 'select_rfrac70.dat', delimiter=',',
                      dtype=int) - 1
    Restrop = Restriction(ns * (2 * nt - 1),
                          iava,
                          dims=(ns, 2 * nt - 1),
                          dir=0,
                          dtype='float64')

    # data
    print('Loading reflection data...')
    R = np.zeros((nt, ns, nr), 'f')
    for isrc in range(ns - 1):
        is_ = isrc * jr
        R[:, :, isrc] = np.loadtxt(path0 + 'R/dat1_' + str(is_) + '.dat',
                                   delimiter=',')

    R = 2 * np.swapaxes(R, 0, 2)

    # wavelet
    wav = np.loadtxt(path0 + 'wav.dat', delimiter=',')
    wav_c = wav[np.argmax(wav) - 60:np.argmax(wav) + 60]
    W = np.abs(np.fft.rfft(wav, nfft)) * dt

    # Convolution operators
    print('Creating MDC operators...')
    Rtwosided = np.concatenate((np.zeros((nr, ns, nt - 1)), R), axis=-1)
    R1twosided = np.concatenate((np.flip(R, axis=-1), np.zeros(
        (nr, ns, nt - 1))),
                                axis=-1)

    Rtwosided_fft = np.fft.rfft(Rtwosided, 2 * nt - 1,
                                axis=-1) / np.sqrt(2 * nt - 1)
    Rtwosided_fft = Rtwosided_fft[..., :nfmax]
    R1twosided_fft = np.fft.rfft(R1twosided, 2 * nt - 1,
                                 axis=-1) / np.sqrt(2 * nt - 1)
    R1twosided_fft = R1twosided_fft[..., :nfmax]

    Rop = MDC(Rtwosided_fft[iava],
              nt=2 * nt - 1,
              nv=1,
              dt=dt,
              dr=ds,
              twosided=True,
              dtype='complex64')
    R1op = MDC(R1twosided_fft[iava],
               nt=2 * nt - 1,
               nv=1,
               dt=dt,
               dr=ds,
               twosided=True,
               dtype='complex64')

    del wav, R, Rtwosided, R1twosided, Rtwosided_fft, R1twosided_fft

    # configuring radon transform
    nwin = 23
    nwins = 14
    nover = 10
    npx = 101
    pxmax = 0.006
    px = np.linspace(-pxmax, pxmax, npx)

    t2 = np.concatenate([-t[::-1], t[1:]])
    nt2 = t2.shape[0]

    dimsd = (nr, nt2)
    dimss = (nwins * npx, dimsd[1])

    # sliding window radon with overlap
    RadOp = Radon2D(t2,
                    np.linspace(-ds * nwin // 2, ds * nwin // 2, nwin),
                    px,
                    centeredh=True,
                    kind='linear',
                    engine='numba')
    Slidop = Sliding2D(RadOp,
                       dimss,
                       dimsd,
                       nwin,
                       nover,
                       tapertype='cosine',
                       design=True)
    Sparseop = BlockDiag([Slidop, Slidop])

    del nwin, nwins, nover, npx, pxmax, px, t2, nt2, dimsd, dimss, RadOp, Slidop

    # the loop
    print('Entering loop...')
    z_steps = np.arange(zinvs, zendvs + 1, dvsz)
    for z_current in z_steps:
        redatuming_wrapper(toff, W, wav_c, iava, Rop, R1op, Restrop, Sparseop,
                           vsx, vsz, x, z, z_current, nt, dt, nfft, nr, ds,
                           dvsx)
Ejemplo n.º 12
0
perc_subsampling = 0.7
nysub = int(np.round(par["ny"] * perc_subsampling))
iava = np.sort(np.random.permutation(np.arange(par["ny"]))[:nysub])

taxis, taxis2, xaxis, yaxis = makeaxis(par)
wav = ricker(taxis[:41], f0=par["f0"])[0]

# 2d model
_, x2d = linear2d(yaxis, taxis, v, t0, theta, amp, wav)
_, x3d = linear3d(xaxis, yaxis, taxis, v, t0, theta, phi, amp, wav)

# Create restriction operator
Rop2d = Restriction(par["ny"] * par["nt"],
                    iava,
                    dims=(par["ny"], par["nt"]),
                    dir=0,
                    dtype="float64")
y2d = Rop2d * x2d.ravel()
y2d = y2d.reshape(nysub, par["nt"])
Rop3d = Restriction(
    par["ny"] * par["nx"] * par["nt"],
    iava,
    dims=(par["ny"], par["nx"], par["nt"]),
    dir=0,
    dtype="float64",
)
y3d = Rop3d * x3d.ravel()
y3d = y3d.reshape(nysub, par["nx"], par["nt"])

par1_2d = {
Ejemplo n.º 13
0
perc_subsampling = 0.7
nysub = int(np.round(par['ny'] * perc_subsampling))
iava = np.sort(np.random.permutation(np.arange(par['ny']))[:nysub])

taxis, taxis2, xaxis, yaxis = makeaxis(par)
wav = ricker(taxis[:41], f0=par['f0'])[0]

# 2d model
_, x2d = linear2d(yaxis, taxis, v, t0, theta, amp, wav)
_, x3d = linear3d(xaxis, yaxis, taxis, v, t0, theta, phi, amp, wav)

# Create restriction operator
Rop2d = Restriction(par['ny'] * par['nt'],
                    iava,
                    dims=(par['ny'], par['nt']),
                    dir=0,
                    dtype='float64')
y2d = Rop2d * x2d.flatten()
y2d = y2d.reshape(nysub, par['nt'])
Rop3d = Restriction(par['ny'] * par['nx'] * par['nt'],
                    iava,
                    dims=(par['ny'], par['nx'], par['nt']),
                    dir=0,
                    dtype='float64')
y3d = Rop3d * x3d.flatten()
y3d = y3d.reshape(nysub, par['nx'], par['nt'])

par1_2d = {
    'kind': 'spatial',
    'kwargs': dict(epsRs=[np.sqrt(0.1)],