Ejemplo n.º 1
0
def process_segmentation_images(msg,
                                camera_setup,
                                ego_vehicle,
                                speed,
                                csv,
                                dump=False):
    print("Received a message for the time: {}".format(msg.timestamp))

    # If we are in distance to the destination, stop and exit with success.
    if ego_vehicle.get_location().distance(VEHICLE_DESTINATION) <= 5:
        ego_vehicle.set_velocity(carla.Vector3D())
        CLEANUP_FUNCTION()
        sys.exit(0)

    # Compute the segmentation mIOU.
    frame = SegmentedFrame.from_carla_image(msg, camera_setup)
    compute_and_log_miou(frame, msg.timestamp, csv)

    # Visualize the run.
    if dump:
        frame.save(int(msg.timestamp * 1000), './_out/', 'seg')

    # Move the ego_vehicle according to the given speed.
    ego_vehicle.set_velocity(carla.Vector3D(x=-speed))

    # Move the simulator forward.
    ego_vehicle.get_world().tick()
Ejemplo n.º 2
0
    def process_images(self, carla_image):
        """ Invoked when an image is received from the simulator.

        Args:
            carla_image: a carla.Image.
        """
        game_time = int(carla_image.timestamp * 1000)
        timestamp = erdos.Timestamp(coordinates=[game_time])
        watermark_msg = erdos.WatermarkMessage(timestamp)
        with erdos.profile(self.config.name + '.process_images',
                           self,
                           event_data={'timestamp': str(timestamp)}):
            # Ensure that the code executes serially
            with self._lock:
                msg = None
                if self._camera_setup.camera_type == 'sensor.camera.rgb':
                    msg = FrameMessage(
                        timestamp,
                        CameraFrame.from_carla_frame(carla_image,
                                                     self._camera_setup))
                elif self._camera_setup.camera_type == 'sensor.camera.depth':
                    # Include the transform relative to the vehicle.
                    # Carla carla_image.transform returns the world transform,
                    # but we do not use it directly.
                    msg = DepthFrameMessage(
                        timestamp,
                        DepthFrame.from_carla_frame(
                            carla_image,
                            self._camera_setup,
                            save_original_frame=self._flags.
                            visualize_depth_camera))
                elif (self._camera_setup.camera_type ==
                      'sensor.camera.semantic_segmentation'):
                    msg = SegmentedFrameMessage(
                        timestamp,
                        SegmentedFrame.from_carla_image(
                            carla_image, self._camera_setup))

                if self._release_data:
                    self._camera_stream.send(msg)
                    self._camera_stream.send(watermark_msg)
                else:
                    # Pickle the data, and release it upon release msg receipt.
                    pickled_msg = pickle.dumps(
                        msg, protocol=pickle.HIGHEST_PROTOCOL)
                    with self._pickle_lock:
                        self._pickled_messages[msg.timestamp] = pickled_msg
                    self._notify_reading_stream.send(watermark_msg)
Ejemplo n.º 3
0
    def process_images(self, carla_image):
        """ Invoked when an image is received from the simulator.

        Args:
            carla_image: a carla.Image.
        """
        # Ensure that the code executes serially
        with self._lock:
            game_time = int(carla_image.timestamp * 1000)
            timestamp = erdos.Timestamp(coordinates=[game_time])
            watermark_msg = erdos.WatermarkMessage(timestamp)

            msg = None
            if self._camera_setup.camera_type == 'sensor.camera.rgb':
                msg = FrameMessage(
                    timestamp,
                    CameraFrame.from_carla_frame(carla_image,
                                                 self._camera_setup))
            elif self._camera_setup.camera_type == 'sensor.camera.depth':
                # Include the transform relative to the vehicle.
                # Carla carla_image.transform returns the world transform, but
                # we do not use it directly.
                msg = DepthFrameMessage(
                    timestamp,
                    DepthFrame.from_carla_frame(carla_image,
                                                self._camera_setup))
            elif self._camera_setup.camera_type == \
                 'sensor.camera.semantic_segmentation':
                msg = SegmentedFrameMessage(
                    timestamp,
                    SegmentedFrame.from_carla_image(carla_image,
                                                    self._camera_setup))
            # Send the message containing the frame.
            self._camera_stream.send(msg)
            # Note: The operator is set not to automatically propagate
            # watermark messages received on input streams. Thus, we can
            # issue watermarks only after the Carla callback is invoked.
            self._camera_stream.send(watermark_msg)
Ejemplo n.º 4
0
def process_depth_images(msg,
                         depth_camera_setup,
                         ego_vehicle,
                         speed,
                         csv,
                         surface,
                         visualize=False):
    print("Received a message for the time: {}".format(msg.timestamp))

    # If we are in distance to the destination, stop and exit with success.
    if ego_vehicle.get_location().distance(VEHICLE_DESTINATION) <= 5:
        ego_vehicle.set_velocity(carla.Vector3D())
        CLEANUP_FUNCTION()
        sys.exit(0)

    # Get the RGB image corresponding to the given depth image timestamp.
    rgb_image = retrieve_rgb_image(msg.timestamp)

    # Get the semantic image corresponding to the given depth image timestamp.
    semantic_image = retrieve_semantic_image(msg.timestamp)
    semantic_frame = SegmentedFrame.from_carla_image(semantic_image,
                                                     depth_frame.camera_setup)

    # Visualize the image and the bounding boxes if needed.
    if visualize:
        draw_image(rgb_image, surface)

    # Transform people into obstacles relative to the current frame.
    bb_surface = None
    resolution = (depth_camera_setup.width, depth_camera_setup.height)
    if visualize:
        bb_surface = pygame.Surface(resolution)
        bb_surface.set_colorkey((0, 0, 0))

    vehicle_transform = Transform.from_carla_transform(
        ego_vehicle.get_transform())

    depth_frame = DepthFrame.from_carla_frame(msg, depth_camera_setup)
    # Transform the static camera setup with respect to the location of the
    # vehicle in the world.
    depth_frame.camera_setup.set_transform(vehicle_transform *
                                           depth_frame.camera_setup.transform)

    detected_people = []
    for person in ego_vehicle.get_world().get_actors().filter('walker.*'):
        obstacle = Obstacle.from_carla_actor(person)
        if obstacle.distance(vehicle_transform) > 125:
            bbox = None
        else:
            bbox = obstacle.to_camera_view(depth_frame, semantic_frame.frame)
        if bbox is not None:
            detected_people.append(bbox)
            if visualize:
                draw_bounding_box(bbox, bb_surface)

    # We have drawn all the bounding boxes on the bb_surface, now put it on
    # the RGB image surface.
    if visualize:
        surface.blit(bb_surface, (0, 0))
        pygame.display.flip()

    # Compute the mAP.
    print("We detected a total of {} people.".format(len(detected_people)))
    compute_and_log_map(detected_people, msg.timestamp, csv)

    # Move the ego_vehicle according to the given speed.
    ego_vehicle.set_velocity(carla.Vector3D(x=-speed))

    ego_vehicle.get_world().tick()