Ejemplo n.º 1
0
 def test_fixes(self):
     flow = Flow(workdir=test_dir,
                 manager=TaskManager.from_file(
                     os.path.join(test_dir, "taskmanager.yml")))
     inp = {}
     flow.register_task(input=inp)
     flow.allocate()
Ejemplo n.º 2
0
    def __init__(self, code='vasp', system_id='mp-149', kpar=False, **kwargs):
        """
        system_id is to be a mp-id to take a base structure from the mp-database
        kwarg can be used to personalize all lists

        code specifies the name of the code to be tested, it is assumed that an executable with this name is
        present in the current work dir

        to generate the job scripts a taskmanager.yml file is needed in the current work dir
        #todo add example

        list of paralelizaions
        """
        self.code = code
        self.subject = os.path.join(os.getcwd(), code)
        self.manager = TaskManager.from_user_config()
        self.script_list = []
        self.system_id = system_id
        self.kpar = kpar
        self.kpden = None
        mp_key = os.environ['MP_KEY']
        with MPRester(mp_key) as mp_database:
            self.structure = mp_database.get_structure_by_material_id(system_id, final=True)
        self.name = str(self.structure.composition.reduced_formula) + "_" + str(self.system_id)
        self.np_list = [1, 4, 9, 16, 25, 36, 64, 100, 144]
        #self.np_list = [1, 8, 27, 64, 125, 216, 343]
        self.sizes = [1, 2, 3]
        self.parameter_lists = None
        if self.code == 'vasp':
            self.parameter_lists = {'NPAR': [0, 0.5, 1]}
        self.reset_bar()
        self.inpset = BenchVaspInputSet()
        self.inpset.set_input()
Ejemplo n.º 3
0
    def __init__(self, workdir, name=None, flows=None, manager=None, timelimit=None):
        """
        Args:
            workdir: Working directory
            name: Name assigned to the `BatchLauncher`.
            flows:  List of `Flow` objects.
            manager: :class:`TaskManager` object responsible for the submission of the jobs.
                     If manager is None, the object is initialized from the yaml file
                     located either in the working directory or in the user configuration dir.
            timelimit: Time limit (int with seconds or string with time given with 
                the slurm convention: "days-hours:minutes:seconds".
                If timelimit is None, the default value specified in the `batch_adapter` is taken.
        """
        self.workdir = os.path.abspath(workdir)

        if not os.path.exists(self.workdir):
            os.makedirs(self.workdir)
        else:
            pass
            # raise RuntimeError("Directory %s already exists. Use BatchLauncher.pickle_load()" % self.workdir)

        self.name = os.path.basename(self.workdir) if name is None else name
        self.script_file = File(os.path.join(self.workdir, "run.sh"))
        self.qerr_file = File(os.path.join(self.workdir, "queue.qerr"))
        self.qout_file = File(os.path.join(self.workdir, "queue.qout"))
        self.log_file = File(os.path.join(self.workdir, "run.log"))
        self.batch_pidfile = File(os.path.join(self.workdir, "batch.pid"))

        from .tasks import TaskManager

        manager = TaskManager.as_manager(manager)

        # Extract the qadapater to be used for the batch script.
        try:
            self.qadapter = qad = manager.batch_adapter
        except AttributeError:
            raise RuntimeError("Your manager.yml file does not define an entry for the batch_adapter")

        if qad is None:
            raise RuntimeError("Your manager.yml file does not define an entry for the batch_adapter")

        # Set mpi_procs to 1 just to be on the safe side
        # Then allow the user to change the timelimit via __init__
        qad.set_mpi_procs(1)
        if timelimit is not None:
            self.set_timelimit(timelimit)
            # FIXME: Remove me!
            self.set_timelimit(36000)

        # Initialize list of flows.
        if flows is None:
            flows = []
        if not isinstance(flows, (list, tuple)):
            flows = [flows]
        self.flows = flows
Ejemplo n.º 4
0
def load_flow(inp, runpath):
    pickle_file = os.path.join(runpath,'__AbinitFlow__.pickle')
    try:
        flow = pickle.Unpickler(open(pickle_file)).load()
    except IOError as e:
        manager = TaskManager.from_user_config()
        flow = PhononFlow(runpath, manager, inp, ngqpt=[2,2,2], do_nscf = False)
        flow.ph_tolvrs = 1.e-2
        flow.build_tasks()
        flow = flow.allocate()
    return flow
Ejemplo n.º 5
0
    def __init__(self, workdir=None, manager=None, trials=ALL_TRIALS, accuracies=ALL_ACCURACIES):
        """
        Args:
            workdir: Working directory.
            manager: :class:`TaskManager` object that will handle the sumbmission of the jobs.
        """
        self.workdir = os.path.abspath(workdir) if workdir is not None else os.path.join(os.getcwd(), "DOJO")
        self.manager = TaskManager.from_user_config() if manager is None else manager
        self.trials, self.accuracies = trials, accuracies

        # List of pseudos analyzed by the Dojo and corresponding flows.
        self.pseudos, self.flows = [], []
Ejemplo n.º 6
0
    def calc_phbands_and_dos(self, ngqpt=None, ndivsm=20, nqsmall=10, asr=2, chneut=1, dipdip=1, dos_method="tetra",
                             workdir=None, manager=None, verbose=0, plot=True, ret_task=False):
        """
        Execute anaddb to compute the phonon band structure and the phonon DOS

        Args:
            ngqpt: Number of divisions for the q-mesh in the DDB file. Auto-detected if None (default)
            asr, chneut, dipdp: Anaddb input variable. See official documentation.
            workdir: Working directory. If None, a temporary directory is created.
            manager: :class:`TaskManager` object. If None, the object is initialized from the configuration file
            verbose: verbosity level. Set it to a value > 0 to get more information
        """
        if ngqpt is None: ngqpt = self.guessed_ngqpt

        inp = AnaddbInput.phbands_and_dos(
            self.structure, ngqpt=ngqpt, ndivsm=ndivsm, nqsmall=nqsmall, 
            q1shft=(0,0,0), qptbounds=None, asr=asr, chneut=chneut, dipdip=dipdip, dos_method=dos_method)

        if manager is None: manager = TaskManager.from_user_config()
        if workdir is None: workdir = tempfile.mkdtemp()
        if verbose: 
            print("workdir:", workdir)
            print("ANADDB INPUT:\n", inp)

        task = AnaddbTask(inp, self.filepath, workdir=workdir, manager=manager.to_shell_manager(mpi_procs=1))

        if ret_task:
            return task

        # Run the task here.
        task.start_and_wait(autoparal=False)

        report = task.get_event_report()
        if not report.run_completed:
            raise TaskException(task=task, report=report)

        with task.open_phbst() as phbst_ncfile, task.open_phdos() as phdos_ncfile:
            phbands, phdos = phbst_ncfile.phbands, phdos_ncfile.phdos
            if plot:
                phbands.plot_with_phdos(phdos, title="Phonon bands and DOS of %s" % self.structure.formula)

            return phbands, phdos
Ejemplo n.º 7
0
    def calc_phmodes_at_qpoint(self, qpoint=None, asr=2, chneut=1, dipdip=1, 
                               workdir=None, manager=None, verbose=0, ret_task=False):
        """
        Execute anaddb to compute phonon modes at the given q-point.

        Args:
            qpoint: Reduced coordinates of the qpoint where phonon modes are computed
            asr, chneut, dipdp: Anaddb input variable. See official documentation.
            workdir: Working directory. If None, a temporary directory is created.
            manager: :class:`TaskManager` object. If None, the object is initialized from the configuration file
            verbose: verbosity level. Set it to a value > 0 to get more information
        """
        if qpoint is None:
            qpoint = self.qpoints[0] 
            if len(self.qpoints) != 1:
                raise ValueError("%s contains %s qpoints and the choice is ambiguous.\n" 
                                 "Please specify the qpoint in calc_phmodes_at_qpoint" % (self, len(self.qpoints)))

        inp = AnaddbInput.modes_at_qpoint(self.structure, qpoint, asr=asr, chneut=chneut, dipdip=dipdip)

        if manager is None: manager = TaskManager.from_user_config()
        if workdir is None: workdir = tempfile.mkdtemp()
        if verbose: 
            print("workdir:", workdir)
            print("ANADDB INPUT:\n", inp)

        task = AnaddbTask(inp, self.filepath, workdir=workdir, manager=manager.to_shell_manager(mpi_procs=1))

        if ret_task:
            return task

        # Run the task here
        task.start_and_wait(autoparal=False)
        report = task.get_event_report()
        if not report.run_completed:
            raise TaskException(task=task, report=report)

        with task.open_phbst() as ncfile:
            return ncfile.phbands
Ejemplo n.º 8
0
    def __init__(self, code='vasp', system_id='mp-149', kpar=False, **kwargs):
        """
        system_id is to be a mp-id to take a base structure from the mp-database
        kwarg can be used to personalize all lists

        code specifies the name of the code to be tested, it is assumed that an executable with this name is
        present in the current work dir

        to generate the job scripts a taskmanager.yml file is needed in the current work dir
        #todo add example

        list of paralelizaions
        """
        self.code = code
        self.subject = os.path.join(os.getcwd(), code)
        self.manager = TaskManager.from_user_config()
        self.script_list = []
        self.system_id = system_id
        self.kpar = kpar
        self.kpden = None
        mp_key = os.environ['MP_KEY']
        with MPRester(mp_key) as mp_database:
            self.structure = mp_database.get_structure_by_material_id(
                system_id, final=True)
        self.name = str(
            self.structure.composition.reduced_formula) + "_" + str(
                self.system_id)
        self.np_list = [1, 4, 9, 16, 25, 36, 64, 100, 144]
        #self.np_list = [1, 8, 27, 64, 125, 216, 343]
        self.sizes = [1, 2, 3]
        self.parameter_lists = None
        if self.code == 'vasp':
            self.parameter_lists = {'NPAR': [0, 0.5, 1]}
        self.reset_bar()
        self.inpset = BenchVaspInputSet()
        self.inpset.set_input()
Ejemplo n.º 9
0
def _setup_faketask(name, manager=None, workdir="."):
    tmp_dir = os.path.join(workdir, "__" + str(name) + "_run__")
    if manager is None:
        manager = TaskManager.from_user_config()
    manager = manager.to_shell_manager()
    return Work(workdir=tmp_dir, manager=manager)
Ejemplo n.º 10
0
from pymatgen.io.abinitio.workflows import Workflow
from pymatgen.io.abinitio.tasks import TaskManager, ScfTask, NscfTask
from pymatgen.io.abinitio.flows import AbinitFlow
from pymatgen.symmetry.bandstructure import HighSymmKpath

from abipy.htc.input import AbiInput
from abipy.core.constants import Energy

from myscripts.pseudos import get_psp
from myscripts.structure import HalfHeusler

scratchdir = '/p/lscratchd/damewood'
basename = os.path.dirname(os.path.abspath(__file__)).split(os.path.sep)[-1]
workdir = os.path.join(scratchdir,basename)
logging.basicConfig()
manager = TaskManager.from_user_config()

acell_opt = {
    'N': {
            'alpha': 4.961,
            'beta' : 4.912,
            'gamma': 5.139,
         },
    'P': {
            'alpha': 5.600,
            'beta' : 5.717,
            'gamma': 5.715,
         },
    'Si': {
            'alpha': 5.629,
            'beta' : 5.778,
Ejemplo n.º 11
0
    def _runem_all(self):
        """
        This function checks the status of all tasks,
        tries to fix tasks that went unconverged, abicritical, or queuecritical
        and tries to run all the tasks that can be submitted.+
        """
        excs = []
        flow = self.flow

        # Allow to change the manager at run-time
        if self.use_dynamic_manager:
            from pymatgen.io.abinitio.tasks import TaskManager
            new_manager = TaskManager.from_user_config()
            for work in flow:
                work.set_manager(new_manager)

        nqjobs = 0
        if self.contact_resource_manager:
            # This call is expensive and therefore it's optional
            nqjobs = flow.get_njobs_in_queue()
            if nqjobs is None:
                nqjobs = 0
                if flow.manager.has_queue: logger.warning('Cannot get njobs_inqueue')

            if nqjobs >= self.max_njobs_inqueue:
                logger.info("Too many jobs in the queue, returning")
                return

        if self.max_nlaunches == -1:
            max_nlaunch = self.max_njobs_inqueue - nqjobs
        else:
            max_nlaunch = min(self.max_njobs_inqueue - nqjobs, self.max_nlaunches)

        # check status and print it.
        flow.check_status(show=False)

        # fix problems
        # Try to restart the unconverged tasks
        # todo donot fire here but prepare for fireing in rapidfire
        for task in self.flow.unconverged_tasks:
            try:
                logger.info("Flow will try restart task %s" % task)
                fired = task.restart()
                if fired: 
                    self.nlaunch += 1
                    max_nlaunch -= 1
                    if max_nlaunch == 0:
                        logger.info("Restart: too many jobs in the queue, returning")
                        flow.pickle_dump()
                        return
            except task.RestartError:
                excs.append(straceback())

        # move here from withing rapid fire ...
        # fix only prepares for restarting, and sets to ready
        nfixed = flow.fix_abi_critical()
        if nfixed: print("Fixed %d AbiCritical errors" % nfixed)

        # Temporarily disable by MG because I don't know if fix_critical works after the
        # introduction of the new qadapters
        if False:
            nfixed = flow.fix_queue_critical()
            if nfixed: print("Fixed %d QueueCritical errors" % nfixed)

        # update database
        flow.pickle_dump()

        # Submit the tasks that are ready.
        try:
            nlaunch = PyLauncher(flow).rapidfire(max_nlaunch=max_nlaunch, sleep_time=10)
            self.nlaunch += nlaunch

            if nlaunch:
                print("[%s] Number of launches: %d" % (time.asctime(), nlaunch))

        except Exception:
            excs.append(straceback())

        flow.show_status()

        if excs:
            logger.critical("*** Scheduler exceptions:\n *** %s" % "\n".join(excs))
            self.exceptions.extend(excs)
Ejemplo n.º 12
0
    def create(self):
        """
        create single abinit G0W0 flow
        """
        manager = 'slurm' if 'ceci' in self.spec['mode'] else 'shell'
        # an AbiStructure object has an overwritten version of get_sorted_structure that sorts according to Z
        # this could also be pulled into the constructor of Abistructure
        #abi_structure = self.structure.get_sorted_structure()
        from abipy import abilab
        item = copy.copy(self.structure.item)
        self.structure.__class__ = abilab.Structure
        self.structure = self.structure.get_sorted_structure_z()
        self.structure.item = item
        abi_structure = self.structure
        manager = TaskManager.from_user_config()
        # Initialize the flow.
        flow = Flow(self.work_dir, manager, pickle_protocol=0)
        # flow = Flow(self.work_dir, manager)

        # kpoint grid defined over density 40 > ~ 3 3 3
        if self.spec['converge'] and not self.all_converged:
            # (2x2x2) gamma centered mesh for the convergence test on nbands and ecuteps
            # if kp_in is present in the specs a kp_in X kp_in x kp_in mesh is used for the convergence studie
            if 'kp_in' in self.spec.keys():
                if self.spec['kp_in'] > 9:
                    print('WARNING:\nkp_in should be < 10 to generate an n x n x n mesh\nfor larger values a grid with '
                          'density kp_in will be generated')
                scf_kppa = self.spec['kp_in']
            else:
                scf_kppa = 2
        else:
            # use the specified density for the final calculation with the converged nbands and ecuteps of other
            # stand alone calculations
            scf_kppa = self.spec['kp_grid_dens']
        gamma = True

        # 'standard' parameters for stand alone calculation
        nb = self.get_bands(self.structure)
        nscf_nband = [10 * nb]

        nksmall = None
        ecuteps = [8]
        ecutsigx = 44

        extra_abivars = dict(
            paral_kgb=1,
            inclvkb=2,
            ecut=44,
            pawecutdg=88,
            gwmem='10',
            getden=-1,
            istwfk="*1",
            timopt=-1,
            nbdbuf=8
        )

        # read user defined extra abivars from file  'extra_abivars' should be dictionary
        extra_abivars.update(read_extra_abivars())
        #self.bands_fac = 0.5 if 'gwcomp' in extra_abivars.keys() else 1
        #self.convs['nscf_nbands']['test_range'] = tuple([self.bands_fac*x for x in self.convs['nscf_nbands']['test_range']])

        response_models = ['godby']
        if 'ppmodel' in extra_abivars.keys():
            response_models = [extra_abivars.pop('ppmodel')]

        if self.option is not None:
            for k in self.option.keys():
                if k in ['ecuteps', 'nscf_nbands']:
                    pass
                else:
                    extra_abivars.update({k: self.option[k]})
                    if k == 'ecut':
                        extra_abivars.update({'pawecutdg': self.option[k]*2})

        try:
            grid = read_grid_from_file(s_name(self.structure)+".full_res")['grid']
            all_done = read_grid_from_file(s_name(self.structure)+".full_res")['all_done']
            workdir = os.path.join(s_name(self.structure), 'w'+str(grid))
        except (IOError, OSError):
            grid = 0
            all_done = False
            workdir = None

        if not all_done:
            if (self.spec['test'] or self.spec['converge']) and not self.all_converged:
                if self.spec['test']:
                    print('| setting test calculation')
                    tests = SingleAbinitGWWork(self.structure, self.spec).tests
                    response_models = []
                else:
                    if grid == 0:
                        print('| setting convergence calculations for grid 0')
                        #tests = SingleAbinitGWWorkFlow(self.structure, self.spec).convs
                        tests = self.convs
                    else:
                        print('| extending grid')
                        #tests = expand(SingleAbinitGWWorkFlow(self.structure, self.spec).convs, grid)
                        tests = expand(self.convs, grid)
                ecuteps = []
                nscf_nband = []
                for test in tests:
                    if tests[test]['level'] == 'scf':
                        if self.option is None:
                            extra_abivars.update({test + '_s': tests[test]['test_range']})
                        elif test in self.option:
                            extra_abivars.update({test: self.option[test]})
                        else:
                            extra_abivars.update({test + '_s': tests[test]['test_range']})
                    else:
                        for value in tests[test]['test_range']:
                            if test == 'nscf_nbands':
                                nscf_nband.append(value * self.get_bands(self.structure))
                                #scr_nband takes nscf_nbands if not specified
                                #sigma_nband takes scr_nbands if not specified
                            if test == 'ecuteps':
                                ecuteps.append(value)
                            if test == 'response_model':
                                response_models.append(value)
            elif self.all_converged:
                print('| setting up for testing the converged values at the high kp grid ')
                # add a bandstructure and dos calculation
                nksmall = 30
                # in this case a convergence study has already been performed.
                # The resulting parameters are passed as option
                ecuteps = [self.option['ecuteps'], self.option['ecuteps'] + self.convs['ecuteps']['test_range'][1] -
                                                   self.convs['ecuteps']['test_range'][0]]
                nscf_nband = [self.option['nscf_nbands'], self.option['nscf_nbands'] + self.convs['nscf_nbands'][
                    'test_range'][1] - self.convs['nscf_nbands']['test_range'][0]]
                # for option in self.option:
                #    if option not in ['ecuteps', 'nscf_nband']:
                #        extra_abivars.update({option + '_s': self.option[option]})
        else:
            print('| all is done for this material')
            return

        logger.info('ecuteps : ', ecuteps)
        logger.info('extra   : ', extra_abivars)
        logger.info('nscf_nb : ', nscf_nband)

        work = g0w0_extended(abi_structure, self.pseudo_table, scf_kppa, nscf_nband, ecuteps, ecutsigx,
                             accuracy="normal", spin_mode="unpolarized", smearing=None, response_models=response_models,
                             charge=0.0, sigma_nband=None, scr_nband=None, gamma=gamma, nksmall=nksmall, **extra_abivars)

        flow.register_work(work, workdir=workdir)

        return flow.allocate()
Ejemplo n.º 13
0
    def _runem_all(self):
        """
        This function checks the status of all tasks,
        tries to fix tasks that went unconverged, abicritical, or queuecritical
        and tries to run all the tasks that can be submitted.+
        """
        excs = []
        flow = self.flow

        # Allow to change the manager at run-time
        if self.use_dynamic_manager:
            from pymatgen.io.abinitio.tasks import TaskManager
            new_manager = TaskManager.from_user_config()
            for work in flow:
                work.set_manager(new_manager)

        nqjobs = flow.get_njobs_in_queue()
        if nqjobs is None:
            nqjobs = 0
            print('Cannot get njobs_inqueue')

        if nqjobs >= self.max_njobs_inqueue:
            print("Too many jobs in the queue, returning")
            return

        if self.max_nlaunch == -1:
            max_nlaunch = self.max_njobs_inqueue - nqjobs
        else:
            max_nlaunch = min(self.max_njobs_inqueue - nqjobs, self.max_nlaunch)

        # check status
        flow.check_status()
        flow.show_status()

        # fix problems
        # Try to restart the unconverged tasks
        # todo donot fire here but prepare for fireing in rapidfire
        for task in self.flow.unconverged_tasks:
            try:
                logger.info("AbinitFlow will try restart task %s" % task)
                fired = task.restart()
                if fired: 
                    self.nlaunch += 1
                    max_nlaunch -= 1
                    if max_nlaunch == 0:
                        print("Restart: too many jobs in the queue, returning")
                        flow.pickle_dump()
                        return
            except Exception:
                excs.append(straceback())

        # move here from withing rapid fire ...
        # fix only prepares for restarting, and sets to ready
        flow.fix_critical()

        # update database
        flow.pickle_dump()

        #if self.num_restarts == self.max_num_restarts:
        #    info_msg = "Reached maximum number of restarts. Cannot restart anymore Returning"
        #    logger.info(info_msg)
        #    self.history.append(info_msg)
        #    return 1

        # Submit the tasks that are ready.
        try:
            nlaunch = PyLauncher(flow).rapidfire(max_nlaunch=max_nlaunch, sleep_time=10)
            self.nlaunch += nlaunch

            if nlaunch:
                print("[%s] Number of launches: %d" % (time.asctime(), nlaunch))

        except Exception:
            excs.append(straceback())

        flow.show_status()

        if excs:
            logger.critical("*** Scheduler exceptions:\n *** %s" % "\n".join(excs))
            self.exceptions.extend(excs)
Ejemplo n.º 14
0
    def _runem_all(self):
        """
        This function checks the status of all tasks,
        tries to fix tasks that went unconverged, abicritical, or queuecritical
        and tries to run all the tasks that can be submitted.+
        """
        excs = []
        flow = self.flow

        # Allow to change the manager at run-time
        if self.use_dynamic_manager:
            from pymatgen.io.abinitio.tasks import TaskManager
            new_manager = TaskManager.from_user_config()
            for work in flow:
                work.set_manager(new_manager)

        nqjobs = flow.get_njobs_in_queue()
        if nqjobs is None:
            nqjobs = 0
            print('Cannot get njobs_inqueue')

        if nqjobs >= self.max_njobs_inqueue:
            print("Too many jobs in the queue, returning")
            return

        if self.max_nlaunch == -1:
            max_nlaunch = self.max_njobs_inqueue - nqjobs
        else:
            max_nlaunch = min(self.max_njobs_inqueue - nqjobs,
                              self.max_nlaunch)

        # check status
        flow.check_status()
        flow.show_status()

        # fix problems
        # Try to restart the unconverged tasks
        # todo donot fire here but prepare for fireing in rapidfire
        for task in self.flow.unconverged_tasks:
            try:
                logger.info("Flow will try restart task %s" % task)
                fired = task.restart()
                if fired:
                    self.nlaunch += 1
                    max_nlaunch -= 1
                    if max_nlaunch == 0:
                        print("Restart: too many jobs in the queue, returning")
                        flow.pickle_dump()
                        return
            except Exception:
                excs.append(straceback())

        # move here from withing rapid fire ...
        # fix only prepares for restarting, and sets to ready
        flow.fix_critical()

        # update database
        flow.pickle_dump()

        #if self.num_restarts == self.max_num_restarts:
        #    info_msg = "Reached maximum number of restarts. Cannot restart anymore Returning"
        #    logger.info(info_msg)
        #    self.history.append(info_msg)
        #    return 1

        # Submit the tasks that are ready.
        try:
            nlaunch = PyLauncher(flow).rapidfire(max_nlaunch=max_nlaunch,
                                                 sleep_time=10)
            self.nlaunch += nlaunch

            if nlaunch:
                print("[%s] Number of launches: %d" %
                      (time.asctime(), nlaunch))

        except Exception:
            excs.append(straceback())

        flow.show_status()

        if excs:
            logger.critical("*** Scheduler exceptions:\n *** %s" %
                            "\n".join(excs))
            self.exceptions.extend(excs)
Ejemplo n.º 15
0
    def _runem_all(self):
        """
        This function checks the status of all tasks,
        tries to fix tasks that went unconverged, abicritical, or queuecritical
        and tries to run all the tasks that can be submitted.+
        """
        excs = []
        flow = self.flow

        # Allow to change the manager at run-time
        if self.use_dynamic_manager:
            from pymatgen.io.abinitio.tasks import TaskManager

            new_manager = TaskManager.from_user_config()
            for work in flow:
                work.set_manager(new_manager)

        nqjobs = 0
        if self.contact_resource_manager:
            # This call is expensive and therefore it's optional
            nqjobs = flow.get_njobs_in_queue()
            if nqjobs is None:
                nqjobs = 0
                if flow.manager.has_queue:
                    logger.warning("Cannot get njobs_inqueue")

            if nqjobs >= self.max_njobs_inqueue:
                print("Too many jobs in the queue: %s, returning" % nqjobs)
                return

        if self.max_nlaunches == -1:
            max_nlaunch = self.max_njobs_inqueue - nqjobs
        else:
            max_nlaunch = min(self.max_njobs_inqueue - nqjobs, self.max_nlaunches)

        # check status.
        flow.check_status(show=False)

        # This check is not perfect, we should make a list of tasks to sumbit
        # and select only the subset so that we don't exceeed mac_ncores_used
        # Many sections of this code should be rewritten.
        # if self.max_ncores_used is not None and flow.ncores_used > self.max_ncores_used:
        if self.max_ncores_used is not None and flow.ncores_allocated > self.max_ncores_used:
            print("Cannot exceed max_ncores_used %s" % self.max_ncores_used)
            logger.info("Cannot exceed max_ncores_used %s" % self.max_ncores_used)
            return

        # Try to restart the unconverged tasks
        # TODO: do not fire here but prepare for fireing in rapidfire
        for task in self.flow.unconverged_tasks:
            try:
                logger.info("Flow will try restart task %s" % task)
                fired = task.restart()
                if fired:
                    self.nlaunch += 1
                    max_nlaunch -= 1
                    if max_nlaunch == 0:
                        logger.info("Restart: too many jobs in the queue, returning")
                        flow.pickle_dump()
                        return

            except task.RestartError:
                excs.append(straceback())

        # Temporarily disable by MG because I don't know if fix_critical works after the
        # introduction of the new qadapters
        # reenabled by MsS disable things that do not work at low level
        # fix only prepares for restarting, and sets to ready
        if self.fix_qcritical:
            nfixed = flow.fix_queue_critical()
            if nfixed:
                print("Fixed %d QCritical error(s)" % nfixed)

        nfixed = flow.fix_abicritical()
        if nfixed:
            print("Fixed %d AbiCritical error(s)" % nfixed)

        # update database
        flow.pickle_dump()

        # Submit the tasks that are ready.
        try:
            nlaunch = PyLauncher(flow).rapidfire(max_nlaunch=max_nlaunch, sleep_time=10)
            self.nlaunch += nlaunch

            if nlaunch:
                print("[%s] Number of launches: %d" % (time.asctime(), nlaunch))

        except Exception:
            excs.append(straceback())

        # check status.
        # flow.check_status(show=True)
        flow.show_status()

        if excs:
            logger.critical("*** Scheduler exceptions:\n *** %s" % "\n".join(excs))
            self.exceptions.extend(excs)
Ejemplo n.º 16
0
 def test_fixes(self):
     flow = Flow(workdir=test_dir, manager=TaskManager.from_file(os.path.join(test_dir, "taskmanager.yml")))
     inp = {}
     flow.register_task(input=inp)
     flow.allocate()
Ejemplo n.º 17
0
    def create(self):
        """
        create single abinit G0W0 flow
        """
        manager = 'slurm' if 'ceci' in self.spec['mode'] else 'shell'
        # an AbiStructure object has an overwritten version of get_sorted_structure that sorts according to Z
        # this could also be pulled into the constructor of Abistructure
        #abi_structure = self.structure.get_sorted_structure()
        from abipy import abilab
        item = copy.copy(self.structure.item)
        self.structure.__class__ = abilab.Structure
        self.structure = self.structure.get_sorted_structure_z()
        self.structure.item = item
        abi_structure = self.structure
        manager = TaskManager.from_user_config()
        # Initialize the flow.
        flow = Flow(self.work_dir, manager, pickle_protocol=0)
        # flow = Flow(self.work_dir, manager)

        # kpoint grid defined over density 40 > ~ 3 3 3
        if self.spec['converge'] and not self.all_converged:
            # (2x2x2) gamma centered mesh for the convergence test on nbands and ecuteps
            # if kp_in is present in the specs a kp_in X kp_in x kp_in mesh is used for the convergence studie
            if 'kp_in' in self.spec.keys():
                if self.spec['kp_in'] > 9:
                    print(
                        'WARNING:\nkp_in should be < 10 to generate an n x n x n mesh\nfor larger values a grid with '
                        'density kp_in will be generated')
                scf_kppa = self.spec['kp_in']
            else:
                scf_kppa = 2
        else:
            # use the specified density for the final calculation with the converged nbands and ecuteps of other
            # stand alone calculations
            scf_kppa = self.spec['kp_grid_dens']
        gamma = True

        # 'standard' parameters for stand alone calculation
        scf_nband = self.get_bands(self.structure)
        nscf_nband = [10 * scf_nband]

        nksmall = None
        ecuteps = [8]
        ecutsigx = 44

        extra_abivars = dict(paral_kgb=1,
                             inclvkb=2,
                             ecut=44,
                             pawecutdg=88,
                             gwmem='10',
                             getden=-1,
                             istwfk="*1",
                             timopt=-1,
                             nbdbuf=8,
                             prtsuscep=0)

        # read user defined extra abivars from file  'extra_abivars' should be dictionary
        extra_abivars.update(read_extra_abivars())
        #self.bands_fac = 0.5 if 'gwcomp' in extra_abivars.keys() else 1
        #self.convs['nscf_nbands']['test_range'] = tuple([self.bands_fac*x for x in self.convs['nscf_nbands']['test_range']])

        response_models = ['godby']
        if 'ppmodel' in extra_abivars.keys():
            response_models = [extra_abivars.pop('ppmodel')]

        if self.option is not None:
            for k in self.option.keys():
                if k in ['ecuteps', 'nscf_nbands']:
                    pass
                else:
                    extra_abivars.update({k: self.option[k]})
                    if k == 'ecut':
                        extra_abivars.update({'pawecutdg': self.option[k] * 2})

        try:
            grid = read_grid_from_file(s_name(self.structure) +
                                       ".full_res")['grid']
            all_done = read_grid_from_file(
                s_name(self.structure) + ".full_res")['all_done']
            workdir = os.path.join(s_name(self.structure), 'w' + str(grid))
        except (IOError, OSError):
            grid = 0
            all_done = False
            workdir = None

        if not all_done:
            if (self.spec['test']
                    or self.spec['converge']) and not self.all_converged:
                if self.spec['test']:
                    print('| setting test calculation')
                    tests = SingleAbinitGWWork(self.structure, self.spec).tests
                    response_models = []
                else:
                    if grid == 0:
                        print('| setting convergence calculations for grid 0')
                        #tests = SingleAbinitGWWorkFlow(self.structure, self.spec).convs
                        tests = self.convs
                    else:
                        print('| extending grid')
                        #tests = expand(SingleAbinitGWWorkFlow(self.structure, self.spec).convs, grid)
                        tests = expand(self.convs, grid)
                ecuteps = []
                nscf_nband = []
                for test in tests:
                    if tests[test]['level'] == 'scf':
                        if self.option is None:
                            extra_abivars.update(
                                {test + '_s': tests[test]['test_range']})
                        elif test in self.option:
                            extra_abivars.update({test: self.option[test]})
                        else:
                            extra_abivars.update(
                                {test + '_s': tests[test]['test_range']})
                    else:
                        for value in tests[test]['test_range']:
                            if test == 'nscf_nbands':
                                nscf_nband.append(
                                    value * self.get_bands(self.structure))
                                #scr_nband takes nscf_nbands if not specified
                                #sigma_nband takes scr_nbands if not specified
                            if test == 'ecuteps':
                                ecuteps.append(value)
                            if test == 'response_model':
                                response_models.append(value)
            elif self.all_converged:
                print(
                    '| setting up for testing the converged values at the high kp grid '
                )
                # add a bandstructure and dos calculation
                if os.path.isfile('bands'):
                    nksmall = -30
                    #negative value > only bandstructure
                else:
                    nksmall = 30
                # in this case a convergence study has already been performed.
                # The resulting parameters are passed as option
                ecuteps = [
                    self.option['ecuteps'], self.option['ecuteps'] +
                    self.convs['ecuteps']['test_range'][1] -
                    self.convs['ecuteps']['test_range'][0]
                ]
                nscf_nband = [
                    self.option['nscf_nbands'], self.option['nscf_nbands'] +
                    self.convs['nscf_nbands']['test_range'][1] -
                    self.convs['nscf_nbands']['test_range'][0]
                ]
                # for option in self.option:
                #    if option not in ['ecuteps', 'nscf_nband']:
                #        extra_abivars.update({option + '_s': self.option[option]})
        else:
            print('| all is done for this material')
            return

        logger.info('ecuteps : ', ecuteps)
        logger.info('extra   : ', extra_abivars)
        logger.info('nscf_nb : ', nscf_nband)

        work = g0w0_extended_work(abi_structure,
                                  self.pseudo_table,
                                  scf_kppa,
                                  nscf_nband,
                                  ecuteps,
                                  ecutsigx,
                                  scf_nband,
                                  accuracy="normal",
                                  spin_mode="unpolarized",
                                  smearing=None,
                                  response_models=response_models,
                                  charge=0.0,
                                  sigma_nband=None,
                                  scr_nband=None,
                                  gamma=gamma,
                                  nksmall=nksmall,
                                  **extra_abivars)

        flow.register_work(work, workdir=workdir)

        return flow.allocate()