Ejemplo n.º 1
0
def test_logpt_basic():
    """Make sure we can compute a log-likelihood for a hierarchical model with transforms."""

    with Model() as m:
        a = Uniform("a", 0.0, 1.0)
        c = Normal("c")
        b_l = c * a + 2.0
        b = Uniform("b", b_l, b_l + 1.0)

    a_value_var = m.rvs_to_values[a]
    assert a_value_var.tag.transform

    b_value_var = m.rvs_to_values[b]
    assert b_value_var.tag.transform

    c_value_var = m.rvs_to_values[c]

    b_logp = logpt(b, b_value_var, sum=False)

    res_ancestors = list(walk_model((b_logp,), walk_past_rvs=True))
    res_rv_ancestors = [
        v for v in res_ancestors if v.owner and isinstance(v.owner.op, RandomVariable)
    ]

    # There shouldn't be any `RandomVariable`s in the resulting graph
    assert len(res_rv_ancestors) == 0
    assert b_value_var in res_ancestors
    assert c_value_var in res_ancestors
    assert a_value_var in res_ancestors
Ejemplo n.º 2
0
def test_model_unchanged_logprob_access():
    # Issue #5007
    with Model() as model:
        a = Normal("a")
        c = Uniform("c", lower=a - 1, upper=1)

    original_inputs = set(aesara.graph.graph_inputs([c]))
    # Extract model.logpt
    model.logpt
    new_inputs = set(aesara.graph.graph_inputs([c]))
    assert original_inputs == new_inputs
Ejemplo n.º 3
0
def test_interval_missing_observations():
    with Model() as model:
        obs1 = ma.masked_values([1, 2, -1, 4, -1], value=-1)
        obs2 = ma.masked_values([-1, -1, 6, -1, 8], value=-1)

        rng = aesara.shared(np.random.RandomState(2323), borrow=True)

        with pytest.warns(ImputationWarning):
            theta1 = Uniform("theta1", 0, 5, observed=obs1, rng=rng)
        with pytest.warns(ImputationWarning):
            theta2 = Normal("theta2", mu=theta1, observed=obs2, rng=rng)

        assert "theta1_observed_interval__" in model.named_vars
        assert "theta1_missing_interval__" in model.named_vars
        assert isinstance(
            model.rvs_to_values[model.named_vars["theta1_observed"]].tag.transform, interval
        )

        prior_trace = sample_prior_predictive(return_inferencedata=False)

        # Make sure the observed + missing combined deterministics have the
        # same shape as the original observations vectors
        assert prior_trace["theta1"].shape[-1] == obs1.shape[0]
        assert prior_trace["theta2"].shape[-1] == obs2.shape[0]

        # Make sure that the observed values are newly generated samples
        assert np.all(np.var(prior_trace["theta1_observed"], 0) > 0.0)
        assert np.all(np.var(prior_trace["theta2_observed"], 0) > 0.0)

        # Make sure the missing parts of the combined deterministic matches the
        # sampled missing and observed variable values
        assert np.mean(prior_trace["theta1"][:, obs1.mask] - prior_trace["theta1_missing"]) == 0.0
        assert np.mean(prior_trace["theta1"][:, ~obs1.mask] - prior_trace["theta1_observed"]) == 0.0
        assert np.mean(prior_trace["theta2"][:, obs2.mask] - prior_trace["theta2_missing"]) == 0.0
        assert np.mean(prior_trace["theta2"][:, ~obs2.mask] - prior_trace["theta2_observed"]) == 0.0

        assert {"theta1", "theta2"} <= set(prior_trace.keys())

        trace = sample(
            chains=1, draws=50, compute_convergence_checks=False, return_inferencedata=False
        )

        assert np.all(0 < trace["theta1_missing"].mean(0))
        assert np.all(0 < trace["theta2_missing"].mean(0))
        assert "theta1" not in trace.varnames
        assert "theta2" not in trace.varnames

        # Make sure that the observed values are newly generated samples and that
        # the observed and deterministic matche
        pp_trace = sample_posterior_predictive(trace, return_inferencedata=False)
        assert np.all(np.var(pp_trace["theta1"], 0) > 0.0)
        assert np.all(np.var(pp_trace["theta2"], 0) > 0.0)
        assert np.mean(pp_trace["theta1"][:, ~obs1.mask] - pp_trace["theta1_observed"]) == 0.0
        assert np.mean(pp_trace["theta2"][:, ~obs2.mask] - pp_trace["theta2_observed"]) == 0.0
Ejemplo n.º 4
0
def test_get_scaling():

    assert _get_scaling(None, (2, 3), 2).eval() == 1
    # ndim >=1 & ndim<1
    assert _get_scaling(45, (2, 3), 1).eval() == 22.5
    assert _get_scaling(45, (2, 3), 0).eval() == 45

    # list or tuple tests
    # total_size contains other than Ellipsis, None and Int
    with pytest.raises(TypeError, match="Unrecognized `total_size` type"):
        _get_scaling([2, 4, 5, 9, 11.5], (2, 3), 2)
    # check with Ellipsis
    with pytest.raises(ValueError,
                       match="Double Ellipsis in `total_size` is restricted"):
        _get_scaling([1, 2, 5, Ellipsis, Ellipsis], (2, 3), 2)
    with pytest.raises(
            ValueError,
            match=
            "Length of `total_size` is too big, number of scalings is bigger that ndim",
    ):
        _get_scaling([1, 2, 5, Ellipsis], (2, 3), 2)

    assert _get_scaling([Ellipsis], (2, 3), 2).eval() == 1

    assert _get_scaling([4, 5, 9, Ellipsis, 32, 12], (2, 3, 2),
                        5).eval() == 960
    assert _get_scaling([4, 5, 9, Ellipsis], (2, 3, 2), 5).eval() == 15
    # total_size with no Ellipsis (end = [ ])
    with pytest.raises(
            ValueError,
            match=
            "Length of `total_size` is too big, number of scalings is bigger that ndim",
    ):
        _get_scaling([1, 2, 5], (2, 3), 2)

    assert _get_scaling([], (2, 3), 2).eval() == 1
    assert _get_scaling((), (2, 3), 2).eval() == 1
    # total_size invalid type
    with pytest.raises(
            TypeError,
            match=
            "Unrecognized `total_size` type, expected int or list of ints, got {1, 2, 5}",
    ):
        _get_scaling({1, 2, 5}, (2, 3), 2)

    # test with rvar from model graph
    with Model() as m2:
        rv_var = Uniform("a", 0.0, 1.0)
    total_size = []
    assert _get_scaling(total_size, shape=rv_var.shape,
                        ndim=rv_var.ndim).eval() == 1.0