Ejemplo n.º 1
0
def display_mu_density(
    grid, mu_density, grid_resolution=None, cmap=None, vmin=None, vmax=None
):
    """Prints a colour plot of the MU Density.

    Examples
    --------
    See `pymedphys.mudensity.calculate`_.
    """
    if grid_resolution is None:
        grid_resolution = grid["mlc"][1] - grid["mlc"][0]

    x, y = pcolormesh_grid(grid["mlc"], grid["jaw"], grid_resolution)
    plt.pcolormesh(x, y, mu_density, cmap=cmap, vmin=vmin, vmax=vmax)
    plt.colorbar()
    plt.title("MU density")
    plt.xlabel("MLC direction (mm)")
    plt.ylabel("Jaw direction (mm)")
    plt.axis("equal")
    plt.gca().invert_yaxis()
Ejemplo n.º 2
0
def plot_model(width_data, length_data, factor_data):

    i, j, k = create_transformed_mesh(width_data, length_data, factor_data)
    model_width, model_length, model_factor = i, j, k

    # model_width_mesh, model_length_mesh = np.meshgrid(
    #     model_width, model_length)

    vmin = np.nanmin(
        np.concatenate([model_factor.ravel(),
                        factor_data.ravel()]))
    vmax = np.nanmax(
        np.concatenate([model_factor.ravel(),
                        factor_data.ravel()]))
    # vrange = vmax - vmin

    plt.scatter(
        width_data,
        length_data,
        s=100,
        c=factor_data,
        cmap="viridis",
        vmin=vmin,
        vmax=vmax,
        zorder=2,
    )

    plt.colorbar()

    cs = plt.contour(model_width,
                     model_length,
                     model_factor,
                     20,
                     vmin=vmin,
                     vmax=vmax)

    plt.clabel(cs, cs.levels[::2], inline=True)

    plt.title("Insert model")
    plt.xlabel("width (cm)")
    plt.ylabel("length (cm)")
Ejemplo n.º 3
0
def plot_results(
    grid_xx, grid_yy, logfile_mu_density, mosaiq_mu_density, diff_colour_scale=0.1
):
    min_val = np.min([logfile_mu_density, mosaiq_mu_density])
    max_val = np.max([logfile_mu_density, mosaiq_mu_density])

    plt.figure()
    plt.pcolormesh(grid_xx, grid_yy, logfile_mu_density, vmin=min_val, vmax=max_val)
    plt.colorbar()
    plt.title("Logfile MU density")
    plt.xlabel("MLC direction (mm)")
    plt.ylabel("Jaw direction (mm)")
    plt.gca().invert_yaxis()

    plt.figure()
    plt.pcolormesh(grid_xx, grid_yy, mosaiq_mu_density, vmin=min_val, vmax=max_val)
    plt.colorbar()
    plt.title("Mosaiq MU density")
    plt.xlabel("MLC direction (mm)")
    plt.ylabel("Jaw direction (mm)")
    plt.gca().invert_yaxis()

    scaled_diff = (logfile_mu_density - mosaiq_mu_density) / max_val

    plt.figure()
    plt.pcolormesh(
        grid_xx,
        grid_yy,
        scaled_diff,
        vmin=-diff_colour_scale / 2,
        vmax=diff_colour_scale / 2,
    )
    plt.colorbar(label="Limited colour range = {}".format(diff_colour_scale / 2))
    plt.title("(Logfile - Mosaiq MU density) / Maximum MU Density")
    plt.xlabel("MLC direction (mm)")
    plt.ylabel("Jaw direction (mm)")
    plt.gca().invert_yaxis()

    plt.show()

    plt.figure()
    plt.pcolormesh(
        grid_xx, grid_yy, scaled_diff, vmin=-diff_colour_scale, vmax=diff_colour_scale
    )
    plt.colorbar(label="Limited colour range = {}".format(diff_colour_scale))
    plt.title("(Logfile - Mosaiq MU density) / Maximum MU Density")
    plt.xlabel("MLC direction (mm)")
    plt.ylabel("Jaw direction (mm)")
    plt.gca().invert_yaxis()

    plt.show()

    absolute_range = np.max([-np.min(scaled_diff), np.max(scaled_diff)])

    plt.figure()
    plt.pcolormesh(
        grid_xx, grid_yy, scaled_diff, vmin=-absolute_range, vmax=absolute_range
    )
    plt.colorbar(label="No limited colour range")
    plt.title("(Logfile - Mosaiq MU density) / Maximum MU Density")
    plt.xlabel("MLC direction (mm)")
    plt.ylabel("Jaw direction (mm)")
    plt.gca().invert_yaxis()

    plt.show()
Ejemplo n.º 4
0
def main():
    st.write("""
        # Electron Insert Factors
        """)

    patient_id = st.text_input("Patient ID")

    if patient_id == "":
        st.stop()

    rccc_string_search_pattern = r"\\monacoda\FocalData\RCCC\1~Clinical\*~{}\plan\*\*tel.1".format(
        patient_id)
    rccc_filepath_list = glob(rccc_string_search_pattern)

    nbccc_string_search_pattern = r"\\tunnel-nbcc-monaco\FOCALDATA\NBCCC\1~Clinical\*~{}\plan\*\*tel.1".format(
        patient_id)
    nbccc_filepath_list = glob(nbccc_string_search_pattern)

    sash_string_search_pattern = r"\\tunnel-sash-monaco\Users\Public\Documents\CMS\FocalData\SASH\1~Clinical\*~{}\plan\*\*tel.1".format(
        patient_id)
    sash_filepath_list = glob(sash_string_search_pattern)

    filepath_list = np.concatenate(
        [rccc_filepath_list, nbccc_filepath_list, sash_filepath_list])

    electronmodel_regex = r"RiverinaAgility - (\d+)MeV"
    applicator_regex = r"(\d+)X\d+"

    insert_data = dict()  # type: ignore

    for telfilepath in filepath_list:
        insert_data[telfilepath] = dict()

        with open(telfilepath, "r") as file:
            telfilecontents = np.array(file.read().splitlines())

        insert_data[telfilepath]["reference_index"] = []
        for i, item in enumerate(telfilecontents):
            if re.search(electronmodel_regex, item):
                insert_data[telfilepath]["reference_index"] += [i]

        insert_data[telfilepath]["applicators"] = [
            re.search(applicator_regex,
                      telfilecontents[i + 12]).group(1)  # type: ignore
            for i in insert_data[telfilepath]["reference_index"]
        ]

        insert_data[telfilepath]["energies"] = [
            re.search(electronmodel_regex,
                      telfilecontents[i]).group(1)  # type: ignore
            for i in insert_data[telfilepath]["reference_index"]
        ]

    for telfilepath in filepath_list:
        with open(telfilepath, "r") as file:
            telfilecontents = np.array(file.read().splitlines())

        insert_data[telfilepath]["x"] = []
        insert_data[telfilepath]["y"] = []

        for i, index in enumerate(insert_data[telfilepath]["reference_index"]):
            insert_initial_range = telfilecontents[
                index +
                51::]  # coords start 51 lines after electron model name
            insert_stop = np.where(insert_initial_range == "0")[0][
                0]  # coords stop right before a line containing 0

            insert_coords_string = insert_initial_range[:insert_stop]
            insert_coords = np.fromstring(",".join(insert_coords_string),
                                          sep=",")
            insert_data[telfilepath]["x"].append(insert_coords[0::2] / 10)
            insert_data[telfilepath]["y"].append(insert_coords[1::2] / 10)

    for telfilepath in filepath_list:
        insert_data[telfilepath]["width"] = []
        insert_data[telfilepath]["length"] = []
        insert_data[telfilepath]["circle_centre"] = []
        insert_data[telfilepath]["P/A"] = []

        for i in range(len(insert_data[telfilepath]["reference_index"])):

            width, length, circle_centre = electronfactors.parameterise_insert(
                insert_data[telfilepath]["x"][i],
                insert_data[telfilepath]["y"][i])

            insert_data[telfilepath]["width"].append(width)
            insert_data[telfilepath]["length"].append(length)
            insert_data[telfilepath]["circle_centre"].append(circle_centre)

            insert_data[telfilepath]["P/A"].append(
                electronfactors.convert2_ratio_perim_area(width, length))

    data_filename = r"S:\Physics\RCCC Specific Files\Dosimetry\Elekta_EFacs\electron_factor_measured_data.csv"
    data = pd.read_csv(data_filename)

    width_data = data["Width (cm @ 100SSD)"]
    length_data = data["Length (cm @ 100SSD)"]
    factor_data = data["RCCC Inverse factor (dose open / dose cutout)"]

    p_on_a_data = electronfactors.convert2_ratio_perim_area(
        width_data, length_data)

    for telfilepath in filepath_list:
        insert_data[telfilepath]["model_factor"] = []

        for i in range(len(insert_data[telfilepath]["reference_index"])):
            applicator = float(insert_data[telfilepath]["applicators"][i])
            energy = float(insert_data[telfilepath]["energies"][i])
            ssd = 100

            reference = ((data["Energy (MeV)"] == energy)
                         & (data["Applicator (cm)"] == applicator)
                         & (data["SSD (cm)"] == ssd))

            number_of_measurements = np.sum(reference)

            if number_of_measurements < 8:
                insert_data[telfilepath]["model_factor"].append(np.nan)
            else:
                insert_data[telfilepath]["model_factor"].append(
                    electronfactors.spline_model_with_deformability(
                        insert_data[telfilepath]["width"],
                        insert_data[telfilepath]["P/A"],
                        width_data[reference],
                        p_on_a_data[reference],
                        factor_data[reference],
                    )[0])

    for telfilepath in filepath_list:
        st.write("---")
        st.write("Filepath: `{}`".format(telfilepath))

        for i in range(len(insert_data[telfilepath]["reference_index"])):
            applicator = float(insert_data[telfilepath]["applicators"][i])
            energy = float(insert_data[telfilepath]["energies"][i])
            ssd = 100

            st.write("Applicator: `{} cm` | Energy: `{} MeV`".format(
                applicator, energy))

            width = insert_data[telfilepath]["width"][i]
            length = insert_data[telfilepath]["length"][i]

            plt.figure()
            plot_insert(
                insert_data[telfilepath]["x"][i],
                insert_data[telfilepath]["y"][i],
                insert_data[telfilepath]["width"][i],
                insert_data[telfilepath]["length"][i],
                insert_data[telfilepath]["circle_centre"][i],
            )

            reference = ((data["Energy (MeV)"] == energy)
                         & (data["Applicator (cm)"] == applicator)
                         & (data["SSD (cm)"] == ssd))

            number_of_measurements = np.sum(reference)

            plt.figure()
            if number_of_measurements < 8:
                plt.scatter(
                    width_data[reference],
                    length_data[reference],
                    s=100,
                    c=factor_data[reference],
                    cmap="viridis",
                    zorder=2,
                )
                plt.colorbar()
            else:
                plot_model(
                    width_data[reference],
                    length_data[reference],
                    factor_data[reference],
                )

            reference_data_table = pd.concat(
                [
                    width_data[reference], length_data[reference],
                    factor_data[reference]
                ],
                axis=1,
            )
            reference_data_table.sort_values(
                ["RCCC Inverse factor (dose open / dose cutout)"],
                ascending=False,
                inplace=True,
            )

            st.write(reference_data_table)

            st.pyplot()

            factor = insert_data[telfilepath]["model_factor"][i]

            st.write(
                "Width: `{0:0.2f} cm` | Length: `{1:0.2f} cm` | Factor: `{2:0.3f}`"
                .format(width, length, factor))