Ejemplo n.º 1
0
    def setDF(self, df, update=1):
        #         config = self.get_config()
        configDict = self.__getstate__()
        [configDict.pop(k) for k in list(configDict) if k.startswith('_')]

        if isinstance(df, pd.Series):
            df = df.values
        if isinstance(df, pyutil.np.ndarray):

            if update and (df.shape == self.shape):
                self.loc[:, :] = df
                res = self

            else:
                res = pyutil.init_DF(df, rowName=self.index)
        else:
            res = df
        if not isinstance(res, self.__class__):
            assert isinstance(res, pd.DataFrame)
            #             print self.__class__, res.__class__
            res = self.__class__.from_DataFrame(df=res, )
        res.__setstate__(configDict)
        res.set__colMeta(res.colMeta)
        res.set__rowMeta(res.rowMeta)
        #         res.set_config(**config)
        return res
Ejemplo n.º 2
0
 def __init__(self,
              C=None,
              rowName=None,
              colName=None,
              name=None,
              look=None,
              cmap=None,
              vlim=None,
              fname=None,
              model=None,
              **kwargs):
     df = pyutil.init_DF(C=C, rowName=rowName, colName=colName)
     #         print self.__class__,countMatrix, isinstance(self,countMatrix,)
     super(countMatrix, self).__init__(df)
     self.name_ = name
     self.look = look
     self.cmap = cmap
     self.vlim = vlim
     self.fname = fname
     self.model = model
     self.param = {
         'normF': 'identityNorm',
     }
     self.set_config(test=None, **kwargs)
     self.test = None
Ejemplo n.º 3
0
    def __init__(self,
                 C=None,
                 rowName=None,
                 colName=None,
                 name=None,
                 look=None,
                 cmap=None,
                 vlim=None,
                 fname=None,
                 model=None,
                 colMeta=None,
                 rowMeta=None,
                 height=1.,
                 **kwargs):
        df = pyutil.init_DF(C=C, rowName=rowName, colName=colName)
        #         print self.__class__,countMatrix, isinstance(self,countMatrix,)
        super(countMatrix, self).__init__(df)
        self.name_ = name
        self.look = look
        self.cmap = cmap
        self.vlim = vlim
        self.fname = fname
        self.model = model
        self.height = height
        #         self.colMeta_ = colMeta
        self.set__colMeta(colMeta)
        self.set__rowMeta(rowMeta)
        #         self.rowMeta_ = rowMeta
        self.param = {
            'normF': 'identityNorm',
        }
        self.set_config(test=None, **kwargs)
        self.test = None

        assert self.name != 'test', 'Track name cannot be %s' % self.name
Ejemplo n.º 4
0
 def from_deepcache(cls, d=None, fname=None):
     if fname is not None:
         d = np.load(fname)
         d = dict(d)
     else:
         assert d is not None, 'must specify one of variables: "d" or "fname"'
     deepdict = d
     C = deepdict.get('matrix', np.array([[]]))
     colName = deepdict.get('labels', None)
     rowName = deepdict.get('which is row name?', None)
     df = pyutil.init_DF(C=C, colName=colName, rowName=rowName)
     ins = cls.from_DataFrame(df=df)
     return ins
Ejemplo n.º 5
0
    def setDF(self, df):
        config = self.get_config()
        if isinstance(df, pd.Series):
            df = df.values
        if isinstance(df, pyutil.np.ndarray):
            if df.shape == self.shape:
                self.loc[:, :] = df
                res = self
            else:
                res = pyutil.init_DF(df, rowName=self.index)
        else:
            res = df
        if not isinstance(res, self.__class__):
            assert isinstance(res, pd.DataFrame)
            #             print self.__class__, res.__class__
            res = self.__class__.from_DataFrame(df=res, )

        res.set_config(**config)
        return res