Ejemplo n.º 1
0
def test_percent_variance_exceeds_limit_failure():
    with pytest.raises(RuntimeError):
        make_microstructure(n_samples=1,
                            size=(7, 7),
                            n_phases=3,
                            volume_fraction=(0.3, 0.3, 0.4),
                            percent_variance=0.5)
Ejemplo n.º 2
0
def test_mask_two_samples():
    from pymks import DiscreteIndicatorBasis
    from pymks.stats import correlate
    from pymks.datasets import make_microstructure

    X = make_microstructure(n_samples=2,
                            n_phases=2,
                            size=(3, 3),
                            grain_size=(2, 2),
                            seed=99)
    basis = DiscreteIndicatorBasis(n_states=2)
    mask = np.ones(X.shape)
    mask[:, 0, 0] = 0.
    X_corr = correlate(X, basis, confidence_index=mask)
    X_result = np.array([[[[1 / 3., 1 / 3., 1 / 3.], [1 / 5., 1 / 5., 1 / 5.],
                           [1 / 4., 1 / 4., 0]],
                          [[1 / 5., 1 / 5., 2 / 5.], [1 / 2., 1 / 2., 0],
                           [1 / 5., 1 / 5., 1 / 5.]],
                          [[1 / 4., 1 / 4., 1 / 2.], [1 / 5., 1 / 5., 2 / 5.],
                           [1 / 3., 1 / 3., 0]]],
                         [[[0., 0., 1 / 3.], [2 / 5., 3 / 5., 0.],
                           [0., 0., 1 / 2.]],
                          [[0., 0., 2 / 5.], [3 / 8., 5 / 8., 0],
                           [0., 0., 3 / 5.]],
                          [[0., 0., 1 / 2.], [2 / 5., 3 / 5., 0.],
                           [0., 0., 2 / 3.]]]])
    assert np.allclose(X_corr, X_result)
Ejemplo n.º 3
0
def test_mask_two_samples():
    from pymks import DiscreteIndicatorBasis
    from pymks.stats import correlate
    from pymks.datasets import make_microstructure

    X = make_microstructure(n_samples=2, n_phases=2, size=(3, 3), grain_size=(2, 2), seed=99)
    basis = DiscreteIndicatorBasis(n_states=2)
    X_ = basis.discretize(X)
    mask = np.ones(X.shape)
    mask[:, 0, 0] = 0.0
    X_corr = correlate(X_, confidence_index=mask)
    X_result = np.array(
        [
            [
                [[1 / 3.0, 1 / 3.0, 1 / 3.0], [1 / 5.0, 1 / 5.0, 1 / 5.0], [1 / 4.0, 1 / 4.0, 0]],
                [[1 / 5.0, 1 / 5.0, 2 / 5.0], [1 / 2.0, 1 / 2.0, 0], [1 / 5.0, 1 / 5.0, 1 / 5.0]],
                [[1 / 4.0, 1 / 4.0, 1 / 2.0], [1 / 5.0, 1 / 5.0, 2 / 5.0], [1 / 3.0, 1 / 3.0, 0]],
            ],
            [
                [[0.0, 0.0, 1 / 3.0], [2 / 5.0, 3 / 5.0, 0.0], [0.0, 0.0, 1 / 2.0]],
                [[0.0, 0.0, 2 / 5.0], [3 / 8.0, 5 / 8.0, 0], [0.0, 0.0, 3 / 5.0]],
                [[0.0, 0.0, 1 / 2.0], [2 / 5.0, 3 / 5.0, 0.0], [0.0, 0.0, 2 / 3.0]],
            ],
        ]
    )
    print np.round(X_corr, decimals=4)
    print X_result
    assert np.allclose(X_corr, X_result)
Ejemplo n.º 4
0
def test_mask_two_samples():
    from pymks import DiscreteIndicatorBasis
    from pymks.stats import correlate
    from pymks.datasets import make_microstructure

    X = make_microstructure(n_samples=2, n_phases=2, size=(3, 3),
                            grain_size=(2, 2), seed=99)
    basis = DiscreteIndicatorBasis(n_states=2)
    mask = np.ones(X.shape)
    mask[:, 0, 0] = 0.
    X_corr = correlate(X, basis, confidence_index=mask)
    X_result = np.array([[[[1 / 3., 1 / 3., 1 / 3.],
                           [1 / 5., 1 / 5., 1 / 5.],
                           [1 / 4., 1 / 4., 0]],
                          [[1 / 5., 1 / 5., 2 / 5.],
                           [1 / 2., 1 / 2., 0],
                           [1 / 5., 1 / 5., 1 / 5.]],
                          [[1 / 4., 1 / 4., 1 / 2.],
                           [1 / 5., 1 / 5., 2 / 5.],
                           [1 / 3., 1 / 3., 0]]],
                         [[[0., 0., 1 / 3.],
                           [2 / 5., 3 / 5., 0.],
                           [0., 0., 1 / 2.]],
                          [[0., 0., 2 / 5.],
                           [3 / 8., 5 / 8., 0],
                           [0., 0., 3 / 5.]],
                          [[0., 0., 1 / 2.],
                           [2 / 5., 3 / 5., 0.],
                           [0., 0., 2 / 3.]]]])
    assert np.allclose(X_corr, X_result)
Ejemplo n.º 5
0
def test_percent_variance():
    X = make_microstructure(n_samples=1,
                            n_phases=3,
                            volume_fraction=(0.3, 0.2, 0.5),
                            percent_variance=.2)
    assert np.allclose(np.sum(X == 1) / float(X.size), 0.09, atol=1e-2)
    assert np.allclose(np.sum(X == 2) / float(X.size), 0.57, atol=1e-2)
Ejemplo n.º 6
0
def test_3D_volume_fraction():
    X = make_microstructure(n_samples=1,
                            n_phases=3,
                            size=(21, 21, 21),
                            volume_fraction=(0.3, 0.1, 0.6))
    assert np.allclose(np.sum(X == 0) / float(X.size), 0.3, rtol=1e-3)
    assert np.allclose(np.sum(X == 1) / float(X.size), 0.1, rtol=1e-3)
Ejemplo n.º 7
0
def test_3D_percent_variance():
    X = make_microstructure(n_samples=1,
                            n_phases=3,
                            size=(21, 21, 21),
                            volume_fraction=(0.7, 0.1, 0.2),
                            percent_variance=.2)
    assert np.allclose(np.sum(X == 1) / float(X.size), 0.05, atol=1e-2)
    assert np.allclose(np.sum(X == 2) / float(X.size), 0.2, atol=1e-2)
Ejemplo n.º 8
0
def test_stats_in_parallel():
    from pymks.bases import PrimitiveBasis
    from pymks.stats import correlate
    from pymks.datasets import make_microstructure
    p_basis = PrimitiveBasis(5)
    X = make_microstructure(n_samples=5, n_phases=3)
    X_corr_actual = correlate(X, p_basis)
    for i in range(1, 4):
        X_corr_test = correlate(X, p_basis, n_jobs=i)
        assert np.allclose(X_corr_actual, X_corr_test)
def test_3D_percent_variance():
    volume_fraction = (0.7, 0.1, 0.2)
    percent_variance = .2
    X = make_microstructure(n_samples=1, n_phases=3, size=(21, 21, 21),
                            volume_fraction=volume_fraction,
                            percent_variance=percent_variance)
    vf_1 = np.sum(X == 1) / float(X.size)
    vf_2 = np.sum(X == 2) / float(X.size)
    assert vf_1 > volume_fraction[1] - percent_variance
    assert vf_1 < volume_fraction[1] + percent_variance
    assert vf_2 > volume_fraction[2] - percent_variance
    assert vf_2 < volume_fraction[2] + percent_variance
Ejemplo n.º 10
0
def test_stats_in_parallel():
    import time
    from pymks.bases import PrimitiveBasis
    from pymks.stats import correlate
    from pymks.datasets import make_microstructure
    p_basis = PrimitiveBasis(5)
    if p_basis._pyfftw:
        X = make_microstructure(n_samples=5, n_phases=3)
        t = []
        for i in range(1, 4):
            t_start = time.time()
            correlate(X, p_basis, n_jobs=i)
            t.append(time.time() - t_start)
            assert t == sorted(t, reverse=True)
    else:
        pass
Ejemplo n.º 11
0
def test_stats_in_parallel():
    import time
    from pymks.bases import PrimitiveBasis
    from pymks.stats import correlate
    from pymks.datasets import make_microstructure
    p_basis = PrimitiveBasis(5)
    if p_basis._pyfftw:
        X = make_microstructure(n_samples=5, n_phases=3)
        t = []
        for i in range(1, 4):
            t_start = time.time()
            correlate(X, p_basis, n_jobs=i)
            t.append(time.time() - t_start)
            assert t == sorted(t, reverse=True)
    else:
        pass
def test_volume_fraction_failure():
    make_microstructure(n_samples=1, volume_fraction=(0.3, 0.6))
def test_volume_fraction_with_n_phases_failure():
    make_microstructure(n_samples=1, size=(7, 7), n_phases=3,
                        volume_fraction=(0.5, 0.5))
Ejemplo n.º 14
0
def test_volume_fraction():
    X = make_microstructure(n_samples=1,
                            n_phases=3,
                            volume_fraction=(0.3, 0.2, 0.5))
    assert np.allclose(np.sum(X == 1) / float(X.size), 0.2, rtol=1e-4)
    assert np.allclose(np.sum(X == 2) / float(X.size), 0.5, atol=1e-4)
def test_size_and_grain_size_failure():
    make_microstructure(n_samples=1, size=(7, 7), grain_size=(8, 1))
Ejemplo n.º 16
0
def test_volume_fraction_with_n_phases_failure():
    with pytest.raises(RuntimeError):
        make_microstructure(n_samples=1,
                            size=(7, 7),
                            n_phases=3,
                            volume_fraction=(0.5, 0.5))
Ejemplo n.º 17
0
def test_volume_fraction_failure():
    with pytest.raises(RuntimeError):
        make_microstructure(n_samples=1, volume_fraction=(0.3, 0.6))
def test_volume_fraction_with_n_phases_failure():
    with pytest.raises(RuntimeError):
        make_microstructure(n_samples=1, size=(7, 7), n_phases=3,
                            volume_fraction=(0.5, 0.5))
from AbaqusIO import generateAbaqusInp
from pymks.datasets import make_microstructure

X = make_microstructure()
generateAbaqusInp('test_microstructure', X[0], elastic_modulus=(120, 80),
                  poissions_ratio=(0.3, 0.3))
def test_size_and_grain_size_failure():
    with pytest.raises(RuntimeError):
        make_microstructure(n_samples=1, size=(7, 7), grain_size=(8, 1))
def test_3D_percent_variance():
    X = make_microstructure(n_samples=1, n_phases=3, size=(21, 21, 21),
                            volume_fraction=(0.7, 0.1, 0.2),
                            percent_variance=.2)
    assert np.allclose(np.sum(X == 1) / float(X.size), 0.05, atol=1e-2)
    assert np.allclose(np.sum(X == 2) / float(X.size), 0.2, atol=1e-2)
def test_3D_volume_fraction():
    X = make_microstructure(n_samples=1, n_phases=3, size=(21, 21, 21),
                           volume_fraction=(0.3, 0.1, 0.6))
    assert np.allclose(np.sum(X == 0) / float(X.size), 0.3, rtol=1e-3)
    assert np.allclose(np.sum(X == 1) / float(X.size), 0.1, rtol=1e-3)
Ejemplo n.º 23
0

from pymks.datasets import make_microstructure
from AbaqusIO import generateAbaqusInp

n_phases = 2
grain_size1 = (20, 2, 2)

size = (21, 21, 21)
Long_fiber_x = make_microstructure(n_samples=2, size=size,
                                   n_phases=n_phases, grain_size=grain_size1,
                                   seed=1)
Ab_fiber = Long_fiber_x+1
generateAbaqusInp('test_microstructure', Ab_fiber[1],
                  elastic_modulus=(120, 80),
                  poissions_ratio=(0.3, 0.3))
print "Done"
def test_volume_fraction():
    X = make_microstructure(n_samples=1, n_phases=3,
                            volume_fraction=(0.3, 0.2, 0.5))
    assert np.allclose(np.sum(X == 1) / float(X.size), 0.2, rtol=1e-4)
    assert np.allclose(np.sum(X == 2) / float(X.size), 0.5, atol=1e-4)
def test_percent_variance_exceeds_limit_failure():
    with pytest.raises(RuntimeError):
        make_microstructure(n_samples=1, size=(7, 7), n_phases=3,
                            volume_fraction=(0.3, 0.3, 0.4), percent_variance=0.5)
Ejemplo n.º 26
0
def test_size_and_grain_size_failure():
    with pytest.raises(RuntimeError):
        make_microstructure(n_samples=1, size=(7, 7), grain_size=(8, 1))
def test_percent_variance():
    X = make_microstructure(n_samples=1, n_phases=3,
                            volume_fraction=(0.3, 0.2, 0.5),
                            percent_variance=.2)
    assert np.allclose(np.sum(X == 1) / float(X.size), 0.09, atol=1e-2)
    assert np.allclose(np.sum(X == 2) / float(X.size), 0.57, atol=1e-2)
def test_volume_fraction_failure():
    with pytest.raises(RuntimeError):
        make_microstructure(n_samples=1, volume_fraction=(0.3, 0.6))