Ejemplo n.º 1
0
def interpolate(interpolate_n, probs, radii):
    """Interpoleate the probailites to evenly spaced radii

    Using the max and min radii with `interpolate_n` elements
    interpolate the previously caculated probabilites to new spacing.

    Args:
      interpolate_n: the number of elements
      probs: the probabilites
      radii: the radii

    Returns:
      Tuple of new probabilites and radii

    """
    if interpolate_n is None:
        return probs, radii

    radii_interp = np.linspace(radii.min(), radii.max(), interpolate_n)
    interp = lambda x: np.interp(radii_interp, radii, x)
    return (
        sequence(np.transpose, fmap(interp), list, np.array,
                 np.transpose)(probs),
        radii_interp,
    )
Ejemplo n.º 2
0
def np_paircorr(x_data, cutoff_r=None, interpolate_n=None):
    """Numpy only version of `paircorr_from_twopoint`"""
    return sequence(
        calc_radii,
        lambda x: (calc_probs(x_data, x[2], x[1]), x[0]),
        star(calc_cutoff(cutoff_r)),
        star(interpolate(interpolate_n)),
        lambda x: (np.transpose(x[0]), x[1]),
    )(x_data[0].shape)
Ejemplo n.º 3
0
def calc_radii(shape):
    """Computer the radii with unique distances from the center

    Args:
      shape: the shape of the domain

    Returns:
      a tuple of (radii, index_split, index_sort) where the
      index_split are groupings of indices at the same distance
      and index_sort are the sorted indices
    """
    flatten = lambda x: x.reshape(-1)
    return sequence(
        dist_mesh,
        flatten,
        sort_array,
        lambda x: np.unique(x[0], return_index=True) + (x[1], ),
    )(shape)
Ejemplo n.º 4
0
def calc_probs(x_data, ind_sort, ind_split):
    """Compute the two point probabilities averages radially

    Args:
       x_data: the two point statistics
       ind_sort: the sorted index of distances from the center
       ind_split: the index groupings

    Returns:
       the calculated probabilites averaged over each radii
       grouping

    """
    return sequence(
        lambda x: x.reshape(x.shape[0], -1)[:, ind_sort],
        lambda x: np.split(x, ind_split[1:], axis=1),
        fmap(lambda x: np.average(x, axis=1)),
        list,
        np.array,
    )(x_data)